Articles | Volume 32, issue 2
https://doi.org/10.5194/npg-32-117-2025
https://doi.org/10.5194/npg-32-117-2025
Research article
 | 
15 May 2025
Research article |  | 15 May 2025

Dynamic–statistic combined ensemble prediction and impact factors of China's summer precipitation

Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng

Related authors

A method for predicting the uncompleted climate transition process
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500, https://doi.org/10.5194/npg-27-489-2020,https://doi.org/10.5194/npg-27-489-2020, 2020
Short summary
Transition process of abrupt climate change based on global sea surface temperature over the past century
Pengcheng Yan, Wei Hou, and Guolin Feng
Nonlin. Processes Geophys., 23, 115–126, https://doi.org/10.5194/npg-23-115-2016,https://doi.org/10.5194/npg-23-115-2016, 2016
Short summary
A novel method for analyzing the process of abrupt climate change
P. C. Yan, G. L. Feng, and W. Hou
Nonlin. Processes Geophys., 22, 249–258, https://doi.org/10.5194/npg-22-249-2015,https://doi.org/10.5194/npg-22-249-2015, 2015
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
Multilevel Monte Carlo methods for ensemble variational data assimilation
Mayeul Destouches, Paul Mycek, Selime Gürol, Anthony T. Weaver, Serge Gratton, and Ehouarn Simon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3628,https://doi.org/10.5194/egusphere-2024-3628, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Anaconda, Inc.: Jupyter Notebook, Python 3.9.7, Anaconda, Inc. [code], https://www.anaconda.com/ (last access: 3 September 2024), 2024.​​​​​​​ 
Beijing Climate Center​​​​​​​: BCC_CPSv3. CMDP Monitoring, Beijing Climate Center​​​​​​​ [data set], http://cmdp.ncc-cma.net/Monitoring/cn_index_130.php​​​​​​​ (last access: 3 September 2024), 2024. 
Bueh, C., Shi, N., Ji, L., Wei, J., and Tao, S.: Features of the EAP events on the medium-range evolution process and the mid- and high-latitude Rossby wave activities during the Meiyu period, Chin. Sci. Bull., 53, 610–623, https://doi.org/10.1007/s11434-008-0005-2, 2008. 
CMAP: The combined rainfall analysis data​​​​​​​, The US Climate Prediction Center [data set], https://www.cpc.ncep.noaa.gov/​​​​​​​ (last access: 3 September 2024), 2024. 
Candille, G.: The multiensemble approach: The NAEFS example, Mon. Weather Rev., 137, 1655–1665, https://doi.org/10.1175/2008MWR2682.1, 2009. 
Download
Short summary
 Unequal-weighted ensemble prediction (UWE) using outputs of the dynamic–statistic prediction is presented, and its possible impact factors are also analysed. Results indicate that the UWE has shown promise in improving the prediction skill of summer precipitation in China on account of the fact that UWE can overcome the shortcomings of the structural inadequacy of individual dynamic–statistic predictions, reducing formulation uncertainties and resulting in more stable and accurate predictions.
Share