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Abstract. The dynamic–statistic prediction shows excellent performance with regard to monthly and seasonal
precipitation prediction in China and has been applied to several dynamical models. In order to further improve
the prediction skill of summer precipitation in China, the unequal-weighted ensemble prediction (UWE) using
outputs of the dynamic–statistic prediction is presented, and its possible impact factors are also analysed. Results
indicate that the UWE has shown promise in improving the prediction skill of summer precipitation in China
on account of the fact that the UWE can overcome shortcomings with regard to the structural inadequacy of
individual dynamic–statistic predictions, reducing formulation uncertainties and resulting in more stable and
accurate predictions. Impact factor analysis indicates that (1) the station-based ensemble prediction, with an
anomaly correlation coefficient (ACC) of 0.10–0.11 and a prediction score (PS) score of 69.3–70.2, has shown
better skills than the grid-based one as the former produces a probability density distribution of precipitation
that is closer to observations than the latter. (2) The use of the spatial average removed anomaly correlation
coefficient (SACC) may lower the prediction skill and introduce obvious errors into the estimation of the spatial
consistency of prediction anomalies. SACC could be replaced by the revised anomaly correlation coefficient
(RACC), which is calculated directly using the precipitation anomalies of each station without subtracting the
average precipitation anomaly of all stations. (3) The low dispersal intensity among ensemble samples of the
UWE implies that the historically similar errors selected by means of different approaches are quite close to
each other, making the correction of the model prediction more reliable. Therefore, the UWE is expected to
further improve the accuracy of summer precipitation prediction in China by considering impact factors such as
the grid- or station-based ensemble approach, the method of calculating the ACC, and the dispersal intensity of
ensemble samples in the application and analysis process of the UWE.

1 Introduction

Accurate prediction of summer precipitation across China
is paramount for dealing with critical issues such as flood
and drought management and economic development and
for ensuring food security. However, this task is fraught
with challenges due to the intricate interplay among vari-
ous atmospheric-circulation components, including the East
Asian summer monsoon (Ding, 1994; Lu, 2005), the North-
west Pacific subtropical high (Tao and Wei, 2006), and

the East Asia–Pacific teleconnection patterns (Huang, 2004;
Huang and Li, 1988). Additionally, external influences, such
as the El Niño–Southern Oscillation (ENSO) (Sun et al.,
2021) and the snow cover on the Tibetan Plateau (Si and
Ding, 2013), further complicate the prediction process. Some
studies have also shown that improving the real-time multi-
variate Madden–Julian oscillation (RMM) index or introduc-
ing better intraseasonal signal extraction methods may allow
for higher predictability limits in real-time forecasting (Ding
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and Seo, 2010). Due to these complexities, increasing the
accuracy of summer rainfall prediction in China still faces
challenges, and the pursuit of more precise summer rainfall
predictions in China is an endeavour that warrants the utmost
attention from climate scientists (Gong et al., 2016; Wang et
al., 2012).

Over the past few decades, there has been a remark-
able progression in the foundation of observational data
and theoretical understanding, which has significantly en-
hanced the capabilities of climate dynamical models in pre-
dicting seasonal rainfall (Gettelman et al., 2022; Jie et al.,
2017). High-resolution climate simulations, such as those
with atmospheric resolutions of approximately 50 km and
oceanic resolutions of 0.25°, have been successfully imple-
mented by several research institutions (Roberts et al., 2016;
Satoh et al., 2014; Wu et al., 2021). These dynamic mod-
els have also demonstrated success in long-term prediction
of atmospheric-circulation patterns and sea surface tempera-
tures in low-latitude regions (Zhu and Shukla, 2013). How-
ever, the current performance of seasonal predictions for key
climate elements, including rainfall and temperature, particu-
larly in monsoon-influenced areas like East Asia (Gong et al.,
2017; Wang et al., 2015), remains somewhat constrained due
to inherent limitations in parameterization schemes and the
challenges associated with boundary value problems (Wang
et al., 2015). This has spurred meteorologists to delve deeper
into understanding how to effectively enhance the seasonal
prediction skills of climate models to better align with the
needs of end-users (Gong et al., 2016). It is well recog-
nized that regional climate characteristics can significantly
influence local rainfall patterns and that atmospheric pre-
dictability varies significantly between regions, altitudes, and
seasons (Li and Ding, 2011). Despite this, dynamic models
still struggle to accurately capture these nuances, suggest-
ing that there is potential for improvement in rainfall pre-
diction through a statistical–dynamic approach (Specq and
Batté, 2020). This integrated methodology could provide a
more robust framework for prediction, ultimately leading to
more reliable and actionable climate predictions. The rela-
tive impact of initial conditions and model uncertainties on
local predictability also varies with the system state. There-
fore, strategically reducing uncertainties in sensitive regions
can effectively improve forecasting skills (Li et al., 2020b).
Apart from that, warm events are easier to predict than cold
events (Li et al., 2020a).

To enhance the precision of rainfall prediction,
Chou (1974) initially suggested the integration of dy-
namical model data with statistical analogue information.
This approach leverages the prediction errors from his-
torical years with analogous initial conditions, such as
similar circulation anomalies, snow cover, and sea surface
temperature (SST), to refine dynamic–analogue correction
techniques. For instance, Huang et al. (1993) introduced
the evolutionary analogue-based multi-time prediction
method, Ren and Chou (2006, 2007) employ historical

analogue data to estimate model errors in accordance with
the atmospheric analogy principle, and Feng et al. (2020,
2013) further develop this concept with their correction
method focused on key regional impact factors. Wang
and Fan (2009) proposed a scheme that integrates model
forecasts with the observed spatial patterns of historical
“analogue years”, while Gong et al. (2018) advanced the
leading mode-based correction method. In addition to these
advancements, dynamic–statistic correction methods have
been successfully applied to rainfall predictions in regions
such as northern China (Yang et al., 2012) and northeastern
China (Xiong et al., 2011). Furthermore, the application of
these dynamic–statistic predictions has been extended to
seasonal predictions, including those for autumn, winter,
and spring (Lang and Wang, 2010). At the Beijing Cli-
mate Center, various error selection methods have been
operationalized for rainfall prediction, including the raw
field-based similar-error selection method, the empirical
orthogonal function-based similar-error selection method,
the grid-based similar-error selection method, the regional
key impact factor-based similar-error selection method, and
the abnormal-factor-based similar-error selection method
(Feng et al., 2020). These innovative approaches underscore
the ongoing efforts to harness both dynamical and statistical
insights to achieve more accurate and reliable rainfall
predictions.

Research has consistently demonstrated the benefits of
integrating predictions from multiple climate models. For
instance, the Bayesian model averaging approach (Luo et
al., 2007) and the moving-coefficient ensemble approach
(Yang et al., 2024) are two such approaches that have shown
promise. The use of a multi-model ensemble can mitigate
the collective local biases that can occur in space and time
and across different variables when using individual mod-
els (Krishnamurti et al., 2016). This approach not only as-
signs higher weights to the outputs of more accurate mod-
els but also enhances overall predictive skill and reduces
the uncertainty associated with single-model ensembles (Yan
and Tang, 2013). By accounting for comprehensive uncer-
tainties stemming from both model discrepancies and initial
conditions, multi-model ensembles often outperform single
models (Palmer et al., 2004). Furthermore, the diverse as-
sumptions inherent in different model frameworks can po-
tentially compensate for our incomplete understanding of at-
mospheric dynamics (Yan and Tang, 2013). The multi-model
approach has been successfully applied across a broad spec-
trum of forecasting needs, including medium-range weather
forecasting (Candille, 2009) and seasonal climate predic-
tion (Vitart, 2006). Given the aforementioned advantages of
dynamic–statistic methods in seasonal predictions, it is im-
perative to adopt an ensemble approach that combines the
predictions from these methods. This integration is crucial
for further enhancing prediction accuracy and reliability. By
leveraging the collective strengths of various models and
techniques, we can achieve a more robust and nuanced under-
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standing of climate patterns, ultimately leading to improved
prediction capabilities.

In the process of examining the ensemble prediction, it
is crucial to take into account the various factors that can
influence its predictive accuracy (Kumar and Krishnamurti,
2012). The ensemble’s output is particularly sensitive to sev-
eral key elements: the number of models incorporated, the
duration of the dataset utilized for training, and the distri-
bution of weights for both downscaling and the integration
of multiple models or schemes (Krishnamurti et al., 2016).
Both grid-based reanalysis data and station-based observa-
tional data can serve as the foundation for model training
or validation (Ding et al., 2004; Gong et al., 2016; Wang et
al., 2015). It is therefore essential to explore and discuss the
differential impacts that the use of these two distinct types of
datasets may have on ensemble predictions. Furthermore, the
dispersion of samples across different models or methodolo-
gies cannot be overlooked as this also affects the ensemble’s
predictive skill and deserves certain attention (Houze et al.,
2015).

Based on the above statement, the aim of this research is to
construct an unequal-weighted ensemble prediction (UWE)
employing a comprehensive array of dynamic–statistic meth-
ods and to explore the potential factors that may influence its
predictive capabilities. Specifically, the study is designed to
delve into three primary areas: (1) elucidating the process of
establishing the UWE through a suite of dynamic–statistic
methods, highlighting the distinctions between grid-based
ensembles and station-based ensembles; (2) examining the
most effective methodologies for evaluating the spatial con-
gruence between observational data and the UWE’s output;
and (3) investigating the connection between the dispersal
of samples across various dynamic–statistic methods and the
predictive accuracy of the UWE. This study will provide a
comprehensive analysis of the UWE’s development and its
performance, offering valuable insights into the factors that
influence its predictive success.

2 Data and method

2.1 Data

The monthly precipitation data of 1634 stations for 1983–
2020 are from the National Meteorological Information
Center of the China Meteorological Administration. The
monthly grid precipitation data for 1983–2020 are derived
from the combined rainfall analysis (CMAP) data of the
US Climate Prediction Center. The model prediction data
for summer precipitation in China are hindcast datasets of
the BCC_CPSv3. Monthly climate indices during 1983–
2020, including circulation indices (i.e. Arctic Oscillation,
AO, and Antarctic Oscillation, AAO), SST indices (i.e.
Niño 3.4, Niño 4, and Pacific Decadal Oscillation), and snow
cover indices (i.e. Tibet snow cover area index and north-
eastern China snow cover area index), are available from

the Beijing Climate Center website (http://cmdp.ncc-cma.
net/Monitoring/cn_index_130.php, last access: 3 September
2024) (Gong et al., 2016).

2.2 Climate region division

Climate in China is influenced by various climate sys-
tems, such as monsoons, middle- to high-latitude circula-
tion systems, and westerly jet circulation systems (Ding,
1994; Li et al., 2010; Jie et al., 2017). Since summer rain-
fall has regional characteristics and potential impact fac-
tors, we divide the whole country into eight regions (Feng
et al., 2020): southern China (20–25° N, 110–120° E), east-
ern China (25–35° N, 110–123° E), northern China (35–
42.5° N, 110–123° E), northeastern China (42.5–55° N, 110–
135° E), eastern northwestern China (35–43° N, 90–110° E),
western northwestern China (35–48° N, 75–90° E), the Tibet
area (27–35° N, 80–100° E), and southwestern China (22–
33° N, 95–110° E). Each region is treated separately by the
dynamic–statistic prediction process.

2.3 The dynamic–statistic predictions

The numerical model is an approximation of the behaviour
of the actual atmosphere. The dynamic–statistic prediction is
employed to utilize the information of historical analogues
to estimate the model’s prediction errors through the statisti-
cal method, thereby compensating for the model deficiencies
and reducing the model errors (Huang et al., 1993). As ad-
dressed by Feng et al. (2020), the dynamic–statistic predic-
tion can be explained by Eq. (1):

p̂(ψ0)= p(ψ0)+ p̃(ψj )−p(ψj ), (1)

where p̂(ψ0) is the corrected prediction; p(ψ0) is the original
model prediction; p(ψj ) is the model prediction of the his-
torical year, with similar initial conditions to the current one;
and p̃(ψj ) is the corresponding historical observation. Equa-
tion (1) is the integral form of the similarity error correction
equation, in which the error term of the similar historical pre-
diction p̃(ψj )−p(ψj ) is added to the prediction results of the
numerical model.

p̂(ψ0)
Estimate
−−−−→ Ê(ψ0) (2)

The core idea of the dynamic–statistic prediction is develop-
ing the scheme of how to select a similar year and to estimate
historical prediction errors (Feng et al., 2013; Gong et al.,
2016). Equation (2) transforms the improvement in the dy-
namical model prediction into the estimation of model error
(Feng et al., 2013; Ren and Chou, 2006; Xiong et al., 2011).

2.4 Schemes for the dynamic–statistic prediction

Figure 1 presents the flow chart of the dynamic–statistic pre-
diction method. The key step is the scheme for selecting the
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Figure 1. The flow chart of the dynamic–statistic prediction method. The key step is the scheme for selecting the historically similar years,
which is the step outlined by the dashed red box. The climate indices refer to the 130 monthly climate indices (SST indices, circulation
indices, etc.) during 1983–2020 in Sect. 2.1.

historically similar years, which is the step outlined by the
dashed red box. Different schemes of selecting similar years
from the historical dataset correspond to different dynamic–
statistic prediction schemes. In previous years, a series of the
dynamic–statistic prediction schemes were developed for se-
lecting similar years from the historical information, and ex-
cellent results have been achieved in predicting summer pre-
cipitation anomalies in China (Feng et al., 2013; Wang and
Fan, 2009; Wang et al., 2015; Xiong et al., 2011).

Six kinds of dynamic–statistic prediction approaches rep-
resenting different schemes for analogue error selection are
introduced as follows:

– First is the scheme for the original model-prediction-
based similar-error selection (ORM). With the dynam-
ical model original prediction, we select 4 historical
years that have the most similar features in terms of
anomaly distribution for the current year’s prediction.
Then we calculate the analogue prediction error using
these similar years, add to the current prediction, and
produce the corrected prediction.

– Next is the scheme for empirical orthogonal function
(EOF) mode-based similar-error selection. This is done
by calculating the model prediction error filed and
producing the corresponding spatial modes and corre-
sponding principal components using the EOF method.
Similar years are selected based on the Euclidean dis-
tance of the principal components. Historically similar
errors are calculated using the selected similar years and
are added to the current model prediction, which then
produces the corrected prediction (Gong et al., 2018).

– Next is the scheme for the regional average
precipitation-based similar-error selection (REG).
The whole country is divided into eight regions ac-
cording to the introduction of Sect. 2.2. We select the
climate indices that have high correlations with the

regional average precipitation of each region. With
these highly correlated indices, multiple factors are
randomly configured and used to calculate the shortest
Euclidean distance to choose the historically similar
years and to produce the similar error. Cross-validation
is carried out to correct the model prediction error and
to obtain the optimal multi-factor configuration. Based
on this final optimal multi-predictor configuration,
the dynamic–statistic prediction can be implemented
(Xiong et al., 2011).

– Next, we have the scheme for the grid precipitation-
based similar-error selection (GRD). The similar-error
selection is the same as the REG approach, but the
model prediction error correction is carried out for each
grid point within a region.

– Next, we have the scheme for the abnormal-factor-based
similar-error selection (ABN). We establish which fac-
tors have significant correlations with the regional pre-
cipitation, and then we determine the anomaly thresh-
old of each factor and select the key factors reaching
that threshold. Based on the selected abnormal factors,
similar years are selected by means of the shortest Eu-
clidean distance of the factor set between the current
year and historical years. Then the analogue errors can
be calculated by using the method of weighted average
integration, and these can be added to the current year’s
model prediction, which can produce the corrected pre-
diction (Feng et al., 2020).

– Finally, we have the scheme for systematic error selec-
tion (SYS). The arithmetic mean of the model predic-
tion errors over the years is calculated, after which it is
superimposed onto the model’s original prediction re-
sults to obtain the systematic-error-revised prediction of
the model. This scheme is primarily used for compari-
son with the other five dynamic–statistic schemes.
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The selected similar years are not consistent with each
other among these six schemes; the analogue errors usually
show similar patterns but also show differences with regard
to the details. Besides the dynamic–statistic prediction, the
system error correction is also presented for comparison.

2.5 The dynamic–statistic combined ensemble
prediction

In order to further improve the effectiveness of summer pre-
cipitation predictions by various dynamic–statistic schemes,
this study conducted the dynamic–statistic combined ensem-
ble prediction called unequal-weighted ensemble prediction
(UWE).

Based on the six dynamic–statistic prediction schemes, the
unequal-weighting ensemble prediction (UWE) Em is calcu-
lated using Eq. (3):

Em =
∑n

k=1
wkmFkm (n= 5), (3)

where Fkm is the single prediction of each dynamic–statistic
scheme, and wkm is the weight coefficient of each member. n
denotes the total number of dynamic–statistic schemes, and
m denotes the current prediction year. wkm can be calculated
using Eq. (4). Using a method similar to the cross-check,
the temporal correlation coefficient (TCC) was calculated
by removing the precipitation predictions of the screened
members along with the precipitation actuals for the mth
(m ∈ [1,10]) year of data.

wkm =
Tkm∑n
k=1|Tkm|

(4)

The weights wkm were calculated for each member at each
grid point in the year m, where Tkm is the TCC value cal-
culated for the kth member at that station or grid point after
excluding the precipitation data in year m, and wkm (k = 1,
2, . . . , n) is the weight of the kth member at that grid point
in year m. The anomaly correlation coefficient (ACC), PS
score, and root mean standard error are used for evaluating
the prediction skill for summer precipitation in China. The
PS score can be calculated using Eq. (5):

PS=
f0×N0+ f1×N1+ f2×N2

N −N0+ f0×N0+ f1×N1+ f2×N2+M

× 100, (5)

where N is the total number of stations; N0 is the num-
ber of correctly predicted stations with abnormalities within
(−20 %, 20 %); f0 is the weight coefficient of N0; N1 and f1
are for the stations with abnormal within (−50 %,−20 %) or
(20 %, 50 %); N2 and f2 are for the stations with abnormal
within (−100 %,−50 %) or (50 %, 100 %); andM is the total
number of correctly predicted stations with abnormal below
−100 % or above 100 %. In this study, we set f0 = 2, f1 = 2,
and f2 = 4.

Table 1. The 10-year average of RACC and PS scores of the sum-
mer precipitation prediction from 2011 to 2020 for the dynamic–
statistic predictions and system error correction.

Scheme ORM EOF REG

RACC 0.10 0.03 0.01
PS 69.5 69.6 67.4

Scheme GRD ABN SYS

RACC 0.05 0.02 −0.08
PS 68.2 69.4 65.8

Normally, the spatial average removed ACC (SACC) is
calculated by means of Eq. (6) to assess the spatial consis-
tency of predictions for summer precipitation in China (Fan
et al., 2012; Xiong et al., 2011):

R =

∑n
i=1 (xi − xs)

(
yi − ys

)√∑n
i=1(xi − xs)2∑n

i=1
(
yi − ys

)2 , (6)

where n is the total number of stations, xi is the summer
precipitation abnormal of observation at station i, while yi
is the summer precipitation abnormal of predictions at sta-
tion i. xs and ys are, respectively, the average abnormal of
observations and predictions for all the stations. This so-
called SACC is needed to subtract the average precipitation
anomaly of all stations from the precipitation anomaly of
each station before calculating the ACC.

In order to confirm if the SACC can properly estimate the
spatial consistency of predictions for summer precipitation,
we also calculated the revised anomaly correlation coeffi-
cient (RACC) using Eq. (7):

R∗ =

∑n
i=1

(
xoi − xi,t

)(
yoi − yi,t

)√∑n
i=1
(
xoi − xi,t

)2∑n
i=1
(
yoi − yi,t

)2 , (7)

where n is the total number of stations, and xoi and yoi are,
respectively, the observed and predicted summer precipita-
tion at station i. xi,t and yi,t refer to the averages of observa-
tions and predictions of summer precipitation for all the years
at each station i. The RACC is calculated directly using the
precipitation anomalies of each station without removing the
average precipitation anomaly of all stations.

3 The summer precipitation prediction using the
dynamic–statistic scheme

The RACC and PS scores of the summer precipitation in
China produced by the six dynamic–statistic methods are
presented in Table 1. The 10-year average of the PS score
of the dynamic–statistic methods varied from 67.4 to 69.6,
showing better performance compared to the SYS method
(65.8). In Fig. 2, the temporal correlation coefficients of the
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Figure 2. The differences in the temporal correlation coefficients for summer precipitation predictions in China from 2011 to 2020. Values
indicate differences between the dynamic–statistic method and the SYS method. (a) ORM, (b) EOF, (c) REG, (d) GRD, and (e) ABN.

Table 2. The 10-year average of RACC and PS scores of summer precipitation predictions of the four UWE methods in China during
2011–2020.

Ensemble Ensemble member Grid Station
scheme ensemble ensemble

RACC PS RACC PS

E1 ORM, GRD 0.04 69.2 0.11 69.3
E2 ORM, GRD, EOF 0.07 69.3 0.11 70.2
E3 ORM, GRD, EOF, REG 0.08 69.9 0.11 70.7
E4 ORM, GRD, EOF, REG, ABN 0.09 70.0 0.10 70.1

dynamic–statistic methods are higher than those of the SYS
method over most China, with the distribution spatial pat-
terns being similar to each other, but the most improved ar-
eas varied between the different methods. It has further been
confirmed by previous studies that the merging of predic-
tion errors estimated via the statistical method and dynamic
model-based original output represents a potential means for
improving the prediction skill of summer rainfall in China
(Feng et al., 2020).

Based on Eq. (1), four schemes of the UWE predic-
tion using the single dynamic–statistic predictions as en-
semble members and their corresponding 1-year-out cross-
validations are presented in Table 2. In order to distinguish
the performances of the UWE prediction compared to the
grid point observations and station observations, both the
grid-based ensemble and the station-based ensemble are cal-
culated. Comparing with the single scheme of the dynamic–
statistic prediction, the E4 scheme has the best skill among
the four ensemble schemes, with the RACC score being 0.9
and the PS score being 70. The grid-based ensemble can
somewhat improve the summer precipitation prediction in

China, but its effect varied among different schemes. The
skills of the station-based ensemble are obviously better than
those of the grid-based one, with the RACC score being
0.10–0.11 and the PS score being 69.3–70.2. As addressed
by Yan and Tang (2013), the multi-model ensemble approach
(MME) considers the structural inadequacy of individual
models and can reduce model formulation uncertainties. The
reason why the ensemble of multiple dynamic–statistic pre-
dictions can improve the summer precipitation in China is
similar to that in the case of MME, which can somewhat
overcome the shortcomings of a single prediction and pro-
duce the more stable prediction.

Figure 3 shows that there is no significant difference be-
tween the PS scores of the station-based and grid-based
UWE for the E1 scheme. However, for the E2 scheme,
the station-based UWE clearly outperforms the grid-based
UWE. Additionally, the station-based UWE of the E3 and
E4 schemes also has relatively higher PS scores. RACC val-
ues of the station-based predictions for all four schemes are
generally higher than those for the grid-based UWE. In sum-
mary, compared to the grid-based UWE, the station-based
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Figure 3. Scatter distribution of differences in (a) PS and (b) RACC for summer precipitation prediction during 2011–2020 between station-
based and grid-based UWE. Values indicate the differences between the station-based ensemble and the grid-based ensemble.

one obviously has higher PS scores and RACC values, indi-
cating better prediction performance.

In Fig. 4, the TCC scores of the station-based ensemble
for summer precipitation prediction show positive values in
most of China, with the high-value centres being distributed
in western southern China, central China, southern north-
ern China, western northeastern China, etc. The similar spa-
tial distributions are observed in the predictions of the four
station-based ensemble schemes (Fig. 4a, c, e, g). The TCC
differences between the station-based ensemble and the grid-
based ensemble indicate that the former has higher values
than the latter in most areas of China, except for part of cen-
tral China and eastern China (Fig. 4b, d, f, h). The spatial
distribution of TCC indicates that the improvement in the
station-based ensemble is suitable for most stations in China
and implies that this approach can bring the summer precipi-
tation prediction closer to the observation. Bueh et al. (2008)
also addressed the fact that the training phase of the multi-
model ensemble learns from the recent past performances of
models and is used to determine statistical weights from a
least square minimization via a simple multiple regression.
During the training process, more precise objective data can
produce better weight coefficients and lead to more accurate
ensemble results, which might be the reason for the station-
based ensemble producing better predictions of summer pre-
cipitation in China than the grid-based one.

Figure 5 indicates that the probability density distribution
of station-based ensemble predictions is closer to the obser-
vations, especially at the peak part, than that of the grid-based
ensemble, and this feature is observed in four ensemble pre-
dictions. If the on-site observation dataset can be used for
training, we may have a parameterization scheme containing
precise information for each single station, which may be of
help in producing the prediction to be close to the real situ-
ation of summer precipitation in China. Since the grid-based
dataset is normally made up of the reproduced observation
data, it may lose certain precise information, especially for

Figure 4. Spatial distribution of TCC scores of station-based
UWE for summer precipitation in China during 2011–2020 (a1–
a4) and TCC differences between the station-based ensemble and
the grid-based ensemble (b1–b4). (a1, b1) Ensemble scheme E1,
(a2, b3) ensemble scheme E2, (a3, b3) ensemble scheme E3,
(a4, b4) ensemble scheme E4.

extreme values. This flaw in the grid data may cause poor
performance in terms of improving the prediction accuracy
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Figure 5. Probability density distribution of the total precipitation for observations and the UWE. (a) Ensemble scheme E1, (b) Ensemble
scheme E2, (c) Ensemble scheme E3, (d) Ensemble scheme E4.

Figure 6. Annual RACC, SACC, and PS of station-based ensemble predictions for summer precipitation in China. Prediction of (a) E1,
(b) E2, (c) E3, and (d) E4.
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compared to the station data (Kim et al., 2012; Xiong et al.,
2011; Yang et al., 2024).

The station-based and grid-based UWE values, as well as
the actual precipitation data, all exhibit characteristics of a
normal distribution in Fig. 5 instead of the typical skewed
distribution. This is primarily because this study focuses on
summer precipitation over the entire China region, which
covers a large area and spans a long period, rather than
the precipitation in a single grid or at a single station in a
short period. Within this range, various types of precipitation
events, including light, moderate, and heavy rain, make the
probability distribution closer to the normal distribution. Be-
sides this, in Fig. 5, the probability distribution is calculated
based on the monthly anomaly precipitation and after treat-
ment with the probability function of the Python probability
function, which smoothes the distribution curve. Therefore,
the final probability distribution appears to be a normal dis-
tribution.

4 Calculating the spatial similarity of ensemble
prediction

In Fig. 6, the SACCs and RACCs are not consistent with
each other, and the former are more frequently lower than
the latter. The 10-year average values of SACC for each en-
semble prediction for summer precipitation in China are also
lower than those of the RACC (Table 3). The SACC is cal-
culated after subtracting the spatial average of anomalies for
all the stations from the original precipitation anomaly. This
approach may cause the new value for each station to be un-
able to reflect the real situation and could lead to a decrease
in RACC between the predictions and observations. In Fig. 7,
the correlations between the RACC and PS are all higher than
those between the SACC and PS, which further indicates that
RACC can better assess the prediction skill of summer pre-
cipitation. It is also noted that the differences between the
SACC and RACC are quite obvious in 2011 and 2015 for
ensemble schemes E2, E3, and E4 (Fig. 6b, c, d). Compar-
ing with the PS scores, it seems that the RACC scores for
each prediction have more consistent features than those of
the SACC. In order to figure out if the RACC has better per-
formance compared to the SACC in terms of indicating the
spatial consistency of precipitation prediction, the observa-
tions and predictions of summer precipitation in 2011 and
2015 are presented in Fig. 7. Comparing with the observa-
tions (Fig. 7a5), predicted precipitation anomalies in summer
2011 show consistent features in most of China (Fig. 7a1–
a4). The PS scores of the four ensemble schemes are 69.5,
68.7, 73.5, and 74.3, and the RACC scores are 0.08, 0.07,
0.10, and 0.11, which properly indicate the prediction skill
of these four schemes with regard to the summer precipita-
tion in 2011. It is also noted that the SACCs of the 2011
predictions are 0.01, −0.08, −0.11, and −0.14, which ob-
viously show flaws in terms of assessing the performance of

Figure 7. The spatial distribution of anomalies (unit: %) in obser-
vations and predictions of summer precipitation in 2011 and 2015.
(a1–a4) Predictions of schemes E1–E4 and (a5) observations for
2011; (b1–b4) prediction of schemes E1–E4 and (b5) observations
for 2015.

these four schemes in predicting the precipitation. This short-
coming of the SACC is also exhibited in the prediction of
summer precipitation anomalies in 2015 (Fig. 7b1–b5), ow-
ing to improperly low SACC values of 0.01, −0.07, −0.13,
and −0.17.

5 Impact of dispersal intensity on the ensemble
prediction

The dispersal intensity (Di), also called the coefficient of
variation, is a variable measure of the differences among sin-
gle samples and can be calculated with Eq. (8). The dispersal
intensity is also a relative measure of variability that indi-
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Figure 8. The relationship between each UME’s ACC and the dispersal intensity of each summer precipitation prediction during 2011–2020.
The four dots of each colour indicate the four schemes (E1–E4) applied in each year’s dynamic–statistic prediction.

Table 3. The 10-year average of the RACC and SACC scores
of station-based ensemble predictions for summer precipitation in
China during 2011–2020.

E1 E2 E3 E4

RACC 0.11 0.11 0.11 0.10
SACC 0.10 0.08 0.07 0.05

cates the size of a standard deviation in relation to its mean.
It is a standardized, unitless measure that allows one to com-
pare variability between disparate groups and characteristics
(Tyralis and Papacharalampous, 2024).

Di=

√
n∑
k=1

(
Fkm−Fm

)2
/n

Fm
(8)

Since the dispersal intensity of each statistic–dynamic pre-
diction has obvious interannual variations, it is necessary to
analyse its probable impact on the ensemble prediction of
summer prediction in China. Figure 8 presents the relation-
ship between the ACC and dispersal intensity of summer
precipitation predictions, in which high ACC scores of sum-
mer precipitation predictions mostly correspond to the low
dispersal intensity among statistic–dynamic predictions. The
variabilities in the signal and noise for the ensemble predic-

tion can be measured as the variance of the ensemble mean
and ensemble spread of all the initial conditions (Liu et al.,
2019; Zheng et al., 2009); with regard to the sampling error
in measuring the signal variance, the more reasonable esti-
mation of the signal variance can be given and used to mea-
sure the overall potential predictability of the prediction sys-
tem (DelSole, 2004; DelSole and Tippett, 2007). The UWE
follows a similar theory to the ensemble prediction: the low
dispersal intensity among ensemble samples implies that the
historically similar errors selected by different approaches
are quite close to each other, which makes the correction of
the model prediction more trustworthy and, hence, produces
a more accurate prediction than those cases with high disper-
sal intensity.

In Fig. 9, the 10-year averages of the dispersal intensity
of each UME scheme show similar patterns compared to the
spatial distribution of TCC scores of summer prediction pro-
duced by UME. Except for part of northwestern China and
middle eastern China, the low dispersal intensity also tends
to produce high TCC scores of statistic–dynamic combined
ensemble predictions in most of China. In the middle region
of China, the negative correlation between the dispersal in-
tensity and TCC is not so evident. This could be due to the
limitations of the parameterization schemes in the forecast-
ing models for this region, which may result in inaccurate
simulations of the diffusion process. Additionally, the diver-
sity of meteorological conditions in the middle region could
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Figure 9. The spatial distinction of the 10-year average of dispersal
intensity (a, c, e, g) and TCC (b, d, f, h) for UME schemes E1–E4
during 2011–2020.

lead to inconsistencies in the relationship between dispersal
intensity and TCC across different areas. For instance, the
middle region may be influenced by specific meteorological
systems, such as frontal systems and cyclones, which can af-
fect the relationship between dispersal intensity and TCC.
Therefore, a positive relationship between the dispersal in-
tensity and the ACC can be found in this study; however, this
kind of relationship has uncertainty in different areas, which
still needs to be considered in the operational predictions.
These aspects require further detailed investigation. In con-
clusion, the low dispersal intensity among the single predic-
tions corresponds to the major physical processes captured
by each prediction scheme being similar to each other, which
is of help in the more reasonable estimation of the signal vari-
ance and produces better precipitation predictions.

6 Conclusions and discussion

This study presents the UWE scores of the dynamic–statistic
schemes in order to enhance summer precipitation prediction

in China. The analysis also includes an examination of fac-
tors that may impact the prediction skill of the UWE, such
as grid-based and station-based prediction, the calculation of
prediction skill, and the influence of sample dispersion on
prediction accuracy.

The UWE’s performance surpasses the model and the
dynamic–statistic scheme predictions, potentially due to its
ability to overcome individual model or scheme inadequa-
cies, reduce formulation uncertainties, and yield more sta-
ble and accurate predictions. The average RACC and PS val-
ues for the six dynamic–statistic schemes that were ensemble
members are 0.02–0.10 and 67.4–69.6. In contrast, the grid-
based ensemble prediction of the UWE becomes 0.04–0.09
and 69.2–70.9, which is an improvement compared to the
dynamic–statistic schemes. Station-based ensemble predic-
tion shows superior performance for this compared to grid-
based ensemble prediction and dynamic–statistic methods,
achieving average RACC values of 0.10–0.11 and average
PS values of 69.3–70.7.

The average RACC and PS values for the station-based
ensemble prediction fluctuated between 0.10–0.11 and 69.3–
70.2 from 2011 to 2020, indicating significantly higher profi-
ciency compared to the grid-based ensemble prediction. The
ensemble prediction based on station data can produce pre-
cipitation with a probability density distribution function that
is closer to the observed data compared to the grid-based pre-
diction, making the former more accurate. The use of the
SACC needs to remove the spatial average of the entirety of
the stations from the original value, which may produce inac-
curate station values and lead to a lower correlation between
predictions and observations. This makes SACC unsuitable
for estimating the spatial consistency of summer precipita-
tion predictions. The commonly used SACC should be sup-
planted by the updated RACC, which is computed by directly
utilizing the precipitation anomalies at each station without
the need to deduct the overall average precipitation anomaly
from all stations.

Moreover, the higher RACCs in summer precipitation pre-
diction are predominantly associated with lower dispersal in-
tensity among the dynamic–statistic predictions. This indi-
cates that a more concentrated ensemble, where predictions
are closely aligned, tends to result in more accurate fore-
casts. Accordingly, the dispersal intensity of ensemble sam-
ples is a crucial factor affecting the prediction accuracy of
the dynamic–statistic combined UWE. The UWE shares a
similar theoretical foundation with ensemble prediction. Low
dispersal intensity among ensemble samples suggests that
the historically similar errors identified by various methods
are closely aligned. This alignment enhances the reliability
of corrections applied to model predictions, thereby yielding
more accurate forecasts compared to cases with high disper-
sal intensities.
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