Articles | Volume 31, issue 2
https://doi.org/10.5194/npg-31-219-2024
https://doi.org/10.5194/npg-31-219-2024
Research article
 | 
23 Apr 2024
Research article |  | 23 Apr 2024

Evolution of small-scale turbulence at large Richardson numbers

Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh

Related authors

Effects of rotation and topography on internal solitary waves governed by the rotating Gardner equation
Karl R. Helfrich and Lev Ostrovsky
Nonlin. Processes Geophys., 29, 207–218, https://doi.org/10.5194/npg-29-207-2022,https://doi.org/10.5194/npg-29-207-2022, 2022
Short summary
Dynamics of turbulence under the effect of stratification and internal waves
O. A. Druzhinin and L. A. Ostrovsky
Nonlin. Processes Geophys., 22, 337–348, https://doi.org/10.5194/npg-22-337-2015,https://doi.org/10.5194/npg-22-337-2015, 2015
Short summary
The study of the effect of small-scale turbulence on internal gravity waves propagation in a pycnocline
O. A. Druzhinin, L. A. Ostrovsky, and S. S. Zilitinkevich
Nonlin. Processes Geophys., 20, 977–986, https://doi.org/10.5194/npg-20-977-2013,https://doi.org/10.5194/npg-20-977-2013, 2013

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary
Inferring flow energy, space and time scales: freely-drifting vs fixed point observations
Aurelien Luigi Serge Ponte, Lachlan Astfalck, Matthew Rayson, Andrew Zulberti, and Nicole Jones
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-10,https://doi.org/10.5194/npg-2024-10, 2024
Revised manuscript accepted for NPG
Short summary
How far can the statistical error estimation problem be closed by collocated data?
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398, https://doi.org/10.5194/npg-30-375-2023,https://doi.org/10.5194/npg-30-375-2023, 2023
Short summary

Cited articles

Avicola, G., Moum, J., Perlin, A., and Levine, M.: Enhanced turbulence due to the superposition of internal gravity waves and a coastal upwelling jet, J. Geophys. Res., 112, C06024, https://doi.org/10.1029/2006JC003831, 2007. a
Burchard, H.: Applied Turbulence Modelling in Marine Waters, Springer, Berlin/Heidelberg, Germany, ISBN 978-3-540-45419-9, 2002. a
Burchard, H. and Bolding, K.: Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer, J. Phys. Oceanogr., 31, 1943–1968, https://doi.org/10.1175/1520-0485(2001)031<1943:CAOFSM>2.0.CO;2, 2002. a
Forryan, A., Martin, A., Srokosz, M., Popova, E., Painter, S., and Renner, A.: A new observationally motivated Richardson number based mixing parametrization for oceanic mesoscale flow, J. Geophys. Res.-Oceans, 118, 1405–1419, https://doi.org/10.1002/jgrc.20108, 2013. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y
Galperin, B. and Sukoriansky, S.: QNSE theory of the anisotropic energy spectra of atmospheric and oceanic turbulence, Phys. Rev. Fluids, 5, 063803, https://doi.org/10.1103/PhysRevFluids.5.063803, 2020. a
Download
Short summary
The nonstationary kinetic model of turbulence is used to describe the evolution and structure of the upper turbulent layer with the parameters taken from in situ observations. As an example, we use a set of data for three cruises made in different areas of the world ocean. With the given profiles of current shear and buoyancy frequency, the theory yields results that satisfactorily agree with the measurements of the turbulent dissipation rate.