Articles | Volume 31, issue 2
Research article
23 Apr 2024
Research article |  | 23 Apr 2024

Evolution of small-scale turbulence at large Richardson numbers

Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh

Related authors

Effects of rotation and topography on internal solitary waves governed by the rotating Gardner equation
Karl R. Helfrich and Lev Ostrovsky
Nonlin. Processes Geophys., 29, 207–218,,, 2022
Short summary
Dynamics of turbulence under the effect of stratification and internal waves
O. A. Druzhinin and L. A. Ostrovsky
Nonlin. Processes Geophys., 22, 337–348,,, 2015
Short summary
The study of the effect of small-scale turbulence on internal gravity waves propagation in a pycnocline
O. A. Druzhinin, L. A. Ostrovsky, and S. S. Zilitinkevich
Nonlin. Processes Geophys., 20, 977–986,,, 2013

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
How far can the statistical error estimation problem be closed by collocated data?
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398,,, 2023
Short summary
Using orthogonal vectors to improve the ensemble space of the ensemble Kalman filter and its effect on data assimilation and forecasting
Yung-Yun Cheng, Shu-Chih Yang, Zhe-Hui Lin, and Yung-An Lee
Nonlin. Processes Geophys., 30, 289–297,,, 2023
Short summary
Review article: Towards strongly coupled ensemble data assimilation with additional improvements from machine learning
Eugenia Kalnay, Travis Sluka, Takuma Yoshida, Cheng Da, and Safa Mote
Nonlin. Processes Geophys., 30, 217–236,,, 2023
Short summary
Toward a multivariate formulation of the parametric Kalman filter assimilation: application to a simplified chemical transport model
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166,,, 2023
Short summary
Data-driven reconstruction of partially observed dynamical systems
Pierre Tandeo, Pierre Ailliot, and Florian Sévellec
Nonlin. Processes Geophys., 30, 129–137,,, 2023
Short summary

Cited articles

Avicola, G., Moum, J., Perlin, A., and Levine, M.: Enhanced turbulence due to the superposition of internal gravity waves and a coastal upwelling jet, J. Geophys. Res., 112, C06024,, 2007. a
Burchard, H.: Applied Turbulence Modelling in Marine Waters, Springer, Berlin/Heidelberg, Germany, ISBN 978-3-540-45419-9, 2002. a
Burchard, H. and Bolding, K.: Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer, J. Phys. Oceanogr., 31, 1943–1968,<1943:CAOFSM>2.0.CO;2, 2002. a
Forryan, A., Martin, A., Srokosz, M., Popova, E., Painter, S., and Renner, A.: A new observationally motivated Richardson number based mixing parametrization for oceanic mesoscale flow, J. Geophys. Res.-Oceans, 118, 1405–1419,, 2013. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y
Galperin, B. and Sukoriansky, S.: QNSE theory of the anisotropic energy spectra of atmospheric and oceanic turbulence, Phys. Rev. Fluids, 5, 063803,, 2020. a
Short summary
The nonstationary kinetic model of turbulence is used to describe the evolution and structure of the upper turbulent layer with the parameters taken from in situ observations. As an example, we use a set of data for three cruises made in different areas of the world ocean. With the given profiles of current shear and buoyancy frequency, the theory yields results that satisfactorily agree with the measurements of the turbulent dissipation rate.