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Abstract. The theory of stratified turbulent flow developed earlier by the authors is applied to data from different
areas of the ocean. It is shown that turbulence can be amplified and supported even at large gradient Richardson
numbers. The cause of that is the exchange between kinetic and potential energies of turbulence. Using the
profiles of Brunt–Väisälä frequency and vertical current shear given in Forryan et al. (2013), the profiles of the
kinetic energy dissipation rate are calculated. The results are in reasonable agreement with the experimental data.

1 Introduction

At present, it is well established that the processes in the
upper mixed layer of the ocean and inland waters play a
significant role in both the development of global climate
models and the creation of regional weather forecast models
(e.g. Hostetler et al., 1993; Ljungemyr et al., 1996; Tsuang
et al., 2001; Mackay, 2006). Small-scale and mesoscale pro-
cesses effectively interact with each other and provide an
energy sink for currents and waves of larger scales. Such
processes as wind wave breaking and surface and subsur-
face shear flows can cause turbulent mixing and the result-
ing fine-structure formation with areas of sharp gradients of
temperature and salinity. Whereas the mechanisms of gen-
eration of small-scale turbulence are understood reasonably
well, the problem of its interaction with other types of mo-
tions and long-time support is less clear. Earlier works were
based on Miles’ instability condition Ri < 1/4, where Ri is
the gradient Richardson number. However, in many observa-
tions, turbulence exists in a quasi-stationary regime at much
larger Ri, up to 10 and more. In some works, this was ex-
plained by the presence of a fine structure of currents, with
thin layers of strong shear (Smyth et al., 2013). A more gen-
eral description is based on the semi-empirical K − ε equa-

tions (Burchard, 2002; Burchard and Bolding, 2002; Mel-
lor and Yamada, 1982) showing that the developed turbu-
lence can be amplified and supported under a softer condition
Ri < 1 (Monin and Yaglom, 1965). Similar equations were
used in more specific models of formation of the upper turbu-
lent layer (Ostrovsky and Soustova, 1969) and of the action
of internal waves on turbulence (Ivanov et al., 1983; Strang
and Fernando, 2001; Stretch et al., 2001). However, even that
is insufficient to explain many observations in the ocean and
atmosphere, where the turbulence is observed at significantly
larger Ri (Forryan et al., 2013; Avicola et al., 2007; Galperin
et al., 2021). New theoretical models have also appeared
for describing nonstationary turbulent processes in the atmo-
sphere and ocean. They are based on a spectral approach,
confirming, in particular, the absence of a critical Richardson
number for describing turbulent-wave processes in a strati-
fied fluid (Sukoriansky et al., 2003, 2005b, a; Galperin and
Sukoriansky, 2020; Galperin et al., 2021, 2007).

In Ostrovsky and Troitskaya (1987), within the frame-
work of a kinetic approach, a closed nonstationary model
of turbulence interacting with a variable current was sug-
gested. It includes mutual transformation between kinetic
and potential energies of turbulence. The latter is associ-
ated with the density fluctuations occurring in stratified tur-
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bulence (Monin and Ozmidov, 1981). The theory suggested
in Ostrovsky and Troitskaya (1987) is based on the equa-
tion for the variable probability distribution function of fluid
velocity and density. This approach reduces the uncertainty
of standard semi-empirical K − ε schemes and naturally in-
cludes the potential energy of turbulence in the model. As a
result, small-scale turbulence can be supported at a non-zero
level by the average shear at any finite values of the gradient
Richardson number, without a threshold. Later this approach
was further developed in Zilitinkevich et al. (2007), Zilitinke-
vich et al. (2013), and Soustova et al. (2020) in application
to atmospheric turbulence, where the energy and flux bud-
get (EFB) model was added to the theory. The correspon-
dence between this theory and the K − ε model as well as
the proper parametrization using the turbulent Prandtl num-
ber are discussed in recent works (Gladskikh et al., 2023;
Soustova et al., 2020).

In this paper, the kinetic model of turbulence is used to
describe the evolution and structure of the upper turbulent
layer with the parameters taken from in situ observations.
Particular attention is paid to the cases of the large Richard-
son number and the role of turbulent potential energy in ex-
plaining the observation data. As an example, we use some
data from the paper (Forryan et al., 2013) that provided a rel-
atively detailed set of measurements for three cruises taken
in 2006–2009 in different areas of the world ocean: North At-
lantic (cruise D3406, June–July 2006, and cruise D321, July–
August 2007) and Southern Ocean (cruise JC29, November–
December 2008). These experiments aimed to study turbu-
lent mixing in the presence of a stratified shear flow associ-
ated with mesoscale motions such as eddies and fronts. With
the given profiles of current shear and buoyancy frequency
taken from Forryan et al. (2013), the theory developed in Os-
trovsky and Troitskaya (1987) yields the results that satis-
factorily agree with the measurements of the turbulent dis-
sipation rate given in Forryan et al. (2013). The details of
the measurements can be found in Forryan et al. (2013) and
references therein.

2 Basic equations

The general equations obtained in Ostrovsky and Troitskaya
(1987) (see also Gladskikh et al., 2023), are shown in the
Appendix. Here they will be used for the particular case of
known profiles of horizontal current shear ∂〈ux〉/∂z= Vz,
where 〈ux〉 = V (z) is the ensemble-average horizontal ve-
locity, and the average density is 〈ρ(z)〉 = R(z). Here, z is
the vertical coordinate. As a result, we have a system of two
equations for the kinetic energy of turbulenceK(t,z) and po-
tential energy P (t,z) per unit volume. The latter is related to
the density fluctuations 〈ρ′2〉:

P =
〈ρ′

2
〉g2

2N2R2 . (1)

Figure 1. Profiles of the Richardson number for three cruises cal-
culated from Fig. 2 of Forryan et al. (2013).

Here, g is the gravity acceleration, R(z) is defined above,
and N2(z) is the squared Brunt–Väisala frequency. Note that
here the z direction is chosen downwards. Under the above
conditions, the general Eq. (18) of Ostrovsky and Troitskaya
(1987) and Eq. (6) of Gladskikh et al. (2023) are reduced to
two equations for K:
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Here, L is the outer scale of turbulence and G is the
anisotropy parameter tending to 1 for strongly anisotropic
turbulence with a small vertical scale compared to the hor-
izontal scale. For details, see Ostrovsky and Troitskaya
(1987). Here we consider the model of locally isotropic tur-
bulence, for which G∼ 0.5. The parameter L can be taken
from empirical data (Rodi, 1980) or found from the tur-
bulence spectrum (Forryan et al., 2013; Lozovatsky et al.,
2006). C andD are empirical constants. The terms CK3/2/L

and DK1/2P/L in Eq. (2) define the dissipation rates of ki-
netic and potential energy, respectively.

Before analyzing the full system (2), we note that some
significant conclusions can be made from a reduced, local
ODE system following from Eq. (2) after neglecting the last,
diffusive terms in these equations:
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Figure 2. Temporal variation of kinetic (a) and potential (b) energy for the conditions of cruise JC29. From top to bottom: z= 20,30,50,100,
and 180 m. Here, K0 = P0 = 10−6 m2 s−2.

Figure 3. Profiles of kinetic (blue) and potential (green) energies
for JC29 at t = 40000 s.
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The coordinate z is now a parameter in these equations.
In particular, they define a stationary distribution (a stable
equilibrium point on the phase plane of variables K and P ):

Kst(z)=
V 2
z L

2

2C
f (Ri), Pst(z)=

V 2
z L

2

D
−Kst, (4)

where Ri = V
2
z /N

2 is the Richardson number, and

f (Ri)= 1− (4− 3G)Ri+[
1+R2

i (4− 3G)2
+Ri(4− 6G)

]1/2
. (5)

It is noteworthy that, at Ri→∞, f has a non-zero limit
f∞ = 6(1−G)/(4− 3G)> 0 (it is 1.2 for G= 0.5). Hence,

Figure 4. Profiles of the turbulent kinetic energy dissipation rate
for JC29. Green – interpolated data of Forryan et al. (2013). Blue –
theory.

the turbulent energy remains finite at large Richardson num-
bers. General features of this solution and the turbulent
Prandtl number following from it are discussed in Ostrovsky
and Troitskaya (1987) and Gladskikh et al. (2023). In what
follows, the applicability of these simple solutions will be
verified by comparison with the solutions of the full Eq. (2).
In the experiments, the dissipation rate of kinetic turbulent
energy ε is commonly measured as a characteristic of turbu-
lence. Within the semi-empirical approach, it is defined as
(Kolmogorov, 1941)

ε =
CK3/2

L
. (6)

It is necessary to choose the empirical constants in the above
equations and in Eq. (6). There exists a broad literature dis-
cussing these values for different laboratory and on-site con-
ditions. In the semi-empirical models they are commonly de-
fined by scaling. We choose the outer turbulence scale based
on the results of the spectral approach (Forryan et al., 2013;
Galperin et al., 2007), in which the minimal wave number
for the energy-carrying spectrum approximated by empiri-
cal functions is about 2 cpm. Here we take L= 0.58 m. The
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Figure 5. Profiles of kinetic (blue) and potential (green) energies
for D306 at t = 40000 s.

Figure 6. Profiles of the turbulent kinetic energy dissipation rate
for D306. Green – interpolated data of Forryan et al. (2013). Blue –
theory.

range of the constantC is also wide in the literature. Since we
are mainly interested in the quasi-equilibrium regime when
the shear source is balanced with dissipation of turbulent en-
ergy, we use the data of Rodi (1980) to take C =D = 0.09.
Anyway, we are mainly concerned with the order of the ob-
tained values; indeed, in the data of Forryan et al. (2013)
considered below, the spread of the data is up to an order
of magnitude.

In what follows, we solve systems (2) and (3) using the
Wolfram Mathematica 13 program and compare them with
each other and the data of in situ measurements.

3 Application of the local model

As mentioned, here we apply the theory to the data of the
three cruises described in Forryan et al. (2013). First, we dig-
itized the red curves in Fig. 2 of that paper (as mentioned,
there is a large dispersion of real data, but we naturally use
the mean profiles). Then, using the given profiles of Vz and
N2, we calculated the Richardson number as shown in Fig. 1.

Note that, for a water density of 1000 kg m−3, the static
pressure (dbar) coincides with depth in meters, so that in our

Figure 7. Profiles of kinetic (blue) and potential (green) energies at
t = 40000 for D321.

Figure 8. Profiles of the turbulent kinetic energy dissipation rate
for D321. Green – interpolated data of Forryan et al. (2013). Blue –
theory.

calculations we use the depth, neglecting small differences in
density. As seen from Fig. 1, the Richardson number exceeds
1 within all ranges of the available data, and its maximum lies
in the range of 10–23.

3.1 Cruise JC29

Now, using the interpolation of digitized data for N2 and
Vz given in Fig. 2 of Forryan et al. (2013), we solved
Eq. (3) with the initial conditions K(0,z)=K0 exp(−0.1z)
and P (0,z)= P0 exp(−0.01z) (we remind the reader that, in
the local model, z is a given parameter). The values K0 and
P0 varied from 10−6 to 10−5 m2 s−2 with slight changes in
transient processes but with the same asymptotic values ofK
and P at large times. Figure 2 shows the solutions for several
depths covering the range shown in Forryan et al. (2013).

Here, the constant levels of energy are established in sev-
eral hours. It is natural to use the asymptotic values for com-
parison with the measurement data. In the subsequent plots
we use the log–lin presentation, following Forryan et al.
(2013). Figure 3 shows the depth profile of the energies at

Nonlin. Processes Geophys., 31, 219–227, 2024 https://doi.org/10.5194/npg-31-219-2024



L. Ostrovsky et al.: Evolution of small-scale turbulence at large Richardson numbers 223

Figure 9. Cruise JC29: comparison of profiles of kinetic (a) and potential (b) energies obtained from (3) (local) and (2) (full).

Figure 10. Cruise D306: comparison of profiles of kinetic (a) and potential (b) energies obtained from (3) (local) and (2) (full).

large times. Note that, according to the second Eq. (4), the
asymptotic values of P and K follow each other.

Using this solution, we calculate the turbulent dissipation
rate (Eq. 6) and compare it with the data of Forryan et al.
(2013) after digitizing both and interpolating them by smooth
functions. The result is shown in Fig. 4. Here the difference
between theory and measurements is mainly within a half-
order. Considering the large spread of experimental data, this
is a rather good agreement.

3.2 Cruise D306

To save space, for another two cruises, we show only the
asymptotic profiles of the corresponding values at large
times. For cruise D306, the values of kinetic and potential
energies are of the same order as for cruise JC29 (Fig. 5).

Figure 6 shows the turbulence dissipation rate.
Here again, the difference between the theory and data of

Forryan et al. (2013) is within a half-order.

3.3 Cruise D321

The corresponding dependencies for cruise D321 are given
in Figs. 7 and 8.

Here again, one can see good agreement between the the-
ory and the mean measured profile.

4 Comparison with the full system

The above results were obtained neglecting vertical turbu-
lence diffusion. To verify this approximation, we solved the

full system (2) with the same parameters and initial condi-
tions, adding boundary conditions for fluxes of kinetic and
potential energy:

FK =

√
K∂K

∂z
, FP =

√
K∂P

∂z
. (7)

They are given to be compatible with the initial conditions at
initial points z0 from which the plots start in Fig. 2 of Forryan
et al. (2013) and tend to zero values at the deepest points.
Then, the solutions for K and P were compared with those
of the local system (3). The figures below show such a com-
parison for the asymptotic values. In what follows, the above
local solutions are shown in blue and the solutions of Eq. 2
with diffusion in orange.

In all three cases, the local and full models are practically
identical. Evidently, this means the closeness of data for the
dissipation rate that is a function ofK . Hence, for the vertical
scales of average values, vertical diffusion can be neglected,
and one can use the simplified local Eq. (3).

5 Discussion and conclusions

In this paper we demonstrated that including the potential en-
ergy of turbulence (associated with density fluctuations in the
presence of stratification) in the semi-empirical Reynolds-
type equations of a turbulent flow allows us to explain the ex-
istence and evaluate the parameters of small-scale turbulence
at large Richardson numbers. Application of these equations
to the results of Forryan et al. (2013), where the measure-
ments of profiles of the buoyancy frequency, current shear

https://doi.org/10.5194/npg-31-219-2024 Nonlin. Processes Geophys., 31, 219–227, 2024



224 L. Ostrovsky et al.: Evolution of small-scale turbulence at large Richardson numbers

Figure 11. Cruise D321: comparison of profiles of kinetic (a) and potential (b) energies obtained from (3) (local) and (2) (full).

Figure 12. Maximal (black) and minimal (gray) profiles of the tur-
bulent kinetic energy dissipation rate for D306 calculated from the
maximal possible scatter of data for N2 and S given in Forryan et al.
(2013). Red – the average value shown in blue in 6.

and dissipation rate of turbulent energy are shown together
for three different areas of the ocean, provide not only quali-
tative but also reasonable quantitative agreement between the
theoretical and experimental data. We have also shown that
the contribution of turbulent diffusion to the level of turbulent
pulsations is insignificant in the above case.

For further progress, more specific experimental data sets
are desirable. Indeed, in the above calculations, we used the
average data for buoyancy frequency, velocity shear, and rate
of kinetic energy dissipation plotted in red in Fig. 2 of For-
ryan et al. (2013). However, the same figure shows signif-
icant, up to 1 order of magnitude, data scatter from each
cruise, obtained in different locations and on different days.
The authors do not specify the confidence intervals of the
data, and no correlation between the different curves for the
shear and buoyancy frequency curves is known. Still, it is
possible to evaluate the maximal span of the results based
on the extreme curves in each plot. For that, we digitized the
leftmost and rightmost curves for the shear and buoyancy, in-
terpolated them, and used the resulting functions to calculate
the limits of the theoretical dissipation rate using Eqs. (4) and
(5). For cruise 306, this is shown in Fig. 12.

Note that the data scattering for this value shown in For-
ryan et al. (2013) lies within the maximal theoretical limits,

which implies that, knowing the real data for a specific loca-
tion and time of measurement, we would reasonably predict
the corresponding depth dependence for the turbulent kinetic
energy dissipation rate. Similar results take place for other
cruises.

Note in conclusion that the kinetic approach used in the
equations used above allows us to naturally include the
potential energy under consideration. Considering a large
variation of empirical parameters given in different sources
(Smyth et al., 2013; Liu et al., 2017; You et al., 2003), for fur-
ther study it seems important to find more experimental data
allowing us to apply the theory. We also plan to extend the
present approach to description of time-varying turbulence in
the field of internal waves (e.g., Moum et al., 2022).

Appendix A: Dynamical equations for a turbulent
stratified flow

Here we briefly outline the general system of equations for a
turbulent stratified flow obtained in Ostrovsky and Troitskaya
(1987) and developed in Soustova et al. (2020) and Glad-
skikh et al. (2023). Without dwelling on the details which are
described in these works, here we briefly outline the main
points of the model. It begins by introducing the variable
probability distribution function:

f (v,λ,r, t)= 〈δ(u− v)δ(ρ− λ)〉, (A1)

where δ is the Dirac delta function and the angular parenthe-
ses denote the ensemble averaging. Using this together with
the Navier–Stokes equations for u and ρ and supposing a
Gaussian distribution function, the authors of Ostrovsky and
Troitskaya (1987) obtained expressions for the average fluxes
of turbulent energy, momentum, and mass. They are the same
as in the commonK−ε theory, except for the mass flux, with
the form

〈ρ′u′i〉 = −LV

(
∂〈ρ〉

∂xi
+ gi
〈ρ′

2
〉

V 2ρ0
−

gβi

V 2ρ0

)
, (A2)

where V =
√
〈u′2〉, and L, as above, is the outer scale of tur-

bulence, g is the gravity acceleration, and βi are the compo-
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nents of the vector

β =
1

4π

∫
dr1

∂

∂r

1∣∣∣r − r1
∂
∂z1
〈ρ′(r, t)ρ′(r1, t)〉

∣∣∣ , (A3)

which characterizes the effect of pressure fluctuations arising
from random displacements of a particle in a stratified fluid.

Equation (A2) for the mass flux includes the summand

gi
〈ρ′

2
〉

V 2ρ0
−

gβi
V 2ρ0

, which, as shown below, leads to some signif-
icant differences from results obtained within the framework
of known gradient models. The physical meaning of the ad-
ditional terms in the expression mentioned above is related
to the dependence of the force acting upon a random dis-
placement of a liquid particle in a stratified medium on the
shape of the liquid volume, i.e., on the ratio of the charac-
teristic scales Lz and Lr . As shown in Ostrovsky and Troit-
skaya (1987), the components of the vector β have the form
βx = βy = 0, βz = 〈ρ

′2
〉R for a statistically homogeneous

field of density fluctuations. Here, R is the anisotropy pa-
rameter:

R '

{
1, Lz� Lr ,

'

(
Lr
Lz

)2
Lz� Lr ,

(A4)

where Lz and Lr are the vertical and horizontal scales, re-
spectively, of the density field correlation.

As a result, one obtains the equations for the mean values
of velocity, density, turbulent kinetic energyK = 3V 2/2, and
variance of density pulsations 〈ρ′2〉:
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+〈uj 〉
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∂〈ρ′

2
〉

∂xi
. (A8)

In an incompressible fluid considered here, ∇u= 0. The
potential energy of fluctuations is determined from the last
Eq. (A8). Equation (A6) is a particular case of this system
for the given average current and density stratification. In
general, such effects as internal wave damping by turbulence
can be included in the solution as well. On the other hand,
the turbulence “breakdown” phenomenon, in which, in cer-
tain phases of the wave, the velocity shear cannot maintain
a nonzero level of turbulent energy obtained using the com-
mon semi-empirical equations (Ivanov et al., 1983), does not
exist here. This is also confirmed by numerical calculations
using the parametrization based on the model above, given in
the work (Gladskikh et al., 2023).
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