Articles | Volume 31, issue 1
https://doi.org/10.5194/npg-31-165-2024
https://doi.org/10.5194/npg-31-165-2024
Research article
 | 
28 Mar 2024
Research article |  | 28 Mar 2024

The sampling method for optimal precursors of El Niño–Southern Oscillation events

Bin Shi and Junjie Ma

Related authors

Optimal Disturbances of Blocking: A Barotropic View
Bin Shi, Dehai Luo, and Wenqi Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2747,https://doi.org/10.5194/egusphere-2024-2747, 2024
Short summary
An adjoint-free algorithm for conditional nonlinear optimal perturbations (CNOPs) via sampling
Bin Shi and Guodong Sun
Nonlin. Processes Geophys., 30, 263–276, https://doi.org/10.5194/npg-30-263-2023,https://doi.org/10.5194/npg-30-263-2023, 2023
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Learning extreme vegetation response to climate drivers with recurrent neural networks
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024,https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary

Cited articles

Barclay, A., Gill, P. E., and Ben Rosen, J.: SQP methods and their application to numerical optimal control, in: Variational Calculus, Optimal Control and Applications: International Conference in Honour of L. Bittner and R. Klötzler, Trassenheide, Germany, 23–27 September 1996, 207–222, Springer, https://doi.org/10.1007/978-3-0348-8802-8_21, 1998. a
Battisti, D. S. and Hirst, A. C.: Interannual variability in a tropical atmosphere-ocean model: Influence of the basic state, ocean geometry and nonlinearity, J. Atmos. Sci., 46, 1687–1712, 1989. a
Birgin, E. G., Martínez, J. M., and Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optimiz., 10, 1196–1211, 2000. a, b
Bjerknes, J.: Atmospheric teleconnections from the equatorial Pacific, Mon. Weather Rev., 97, 163–172, 1969. a
Boucharel, J., Almar, R., Kestenare, E., and Jin, F.-F.: On the influence of ENSO complexity on Pan-Pacific coastal wave extremes, P. Natl. Acad. Sci. USA, 118, e2115599118, https://doi.org/10.1073/pnas.2115599118, 2021. a
Download
Short summary
Different from traditional deterministic optimization algorithms, we implement the sampling method to compute the conditional nonlinear optimal perturbations (CNOPs) in the realistic and predictive coupled ocean–atmosphere model, which reduces the first-order information to the zeroth-order one, avoiding the high-cost computation of the gradient. The numerical performance highlights the importance of stochastic optimization algorithms to compute CNOPs and capture initial optimal precursors.