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Abstract. The El Niño–Southern Oscillation (ENSO) is a significant climate phenomenon that appears periodi-
cally in the tropical Pacific. The intermediate coupled ocean–atmosphere Zebiak–Cane (ZC) model is the first and
classical one designed to numerically forecast the ENSO events. Traditionally, the conditional nonlinear optimal
perturbation (CNOP) approach has been used to capture optimal precursors in practice. In this paper, based on
state-of-the-art statistical machine learning techniques∗, we investigate the sampling algorithm proposed in Shi
and Sun (2023) to obtain optimal precursors via the CNOP approach in the ZC model. For the ZC model, or
more generally, the numerical models with a large number O(104

− 105) of degrees of freedom, the numerical
performance, regardless of the statically spatial patterns and the dynamical nonlinear time evolution behaviors
as well as the corresponding quantities and indices, shows the high efficiency of the sampling method compared
to the traditional adjoint method. The sampling algorithm does not only reduce the gradient (first-order infor-
mation) to the objective function value (zeroth-order information) but also avoids the use of the adjoint model,
which is hard to develop in the coupled ocean–atmosphere models and the parameterization models. In addition,
based on the key characteristic that the samples are independently and identically distributed, we can implement
the sampling algorithm by parallel computation to shorten the computation time. Meanwhile, we also show in
the numerical experiments that the important features of optimal precursors can still be captured even when the
number of samples is reduced sharply.

1 Introduction

In the global climate system, the most prominent phe-
nomenon of year-to-year fluctuations is the El Niño–
Southern Oscillation (ENSO), which makes a huge impact on
Earth’s ecosystems and human societies via influencing tem-
perature and precipitation (Cashin et al., 2017). The natural

1Generally, the statistical machine learning techniques refer to
the marriage of traditional optimization methods and statistical
methods, or, say, stochastic optimization methods, where the itera-
tive behavior is governed by the distribution instead of the point due
to the attention of noise. Here, the sampling algorithm used in this
paper is to numerically implement the stochastic gradient descent
method, which takes the sample average to obtain the inaccurate
gradient.

interactions between ocean and atmosphere over the tropi-
cal Pacific not only alter weather around the world thus af-
fecting marine and terrestrial ecosystems, such as fisheries,
but also bring about secondary influences, such as human
health and other societal and economic aspects of the Earth
system (McPhaden et al., 2006; Timmermann et al., 2018;
Boucharel et al., 2021). Thus, it is of vital importance to learn
the mechanism behind the set of coupled ocean–atmosphere
phenomena in order to make a better forecast (Philander,
1989; Sarachik and Cane, 2010).

Modern studies of the ENSO theory date back to the late
sixties of the last century. Bjerknes (1969) pioneered the pos-
itive feedback mechanism, which explains why the ENSO
system has two favored phases and explains their rapid
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growth. However, the positive feedback mechanism does not
provide any explanation for why the ENSO event transits
between the two phases. For the tropical atmosphere, Gill
(1980) proposed a linear shallow water model on the Equa-
tor with the first barocline mode vertical structure, which has
become a standard tool used by both modelers and diagnosti-
cians for describing the atmospheric response to the equato-
rially thermal forcing. Afterward, the heating parameterized
in terms of sea surface temperature (SST) anomalies with ar-
bitrary distribution was introduced in Zebiak (1982) and then
convergence feedback parameterization in Zebiak (1986).
For the ocean process in the tropics, the governing equations
including reduced gravity upper-ocean momentum equations
and the continuity equation for ocean thermocline depth
were proposed in Cane (1984). Ultimately, Zebiak and Cane
(1987) proposed an innovative coupled ocean–atmosphere
model, the Zebiak–Cane (ZC) model, to simulate the ENSO
event, which imports the thermodynamical equation in terms
of SST anomalies and couples the oceanic motion forced by
the wind stress. Although the ZC model simulates the os-
cillation phenomenon, the mechanism still remains unclear
in Zebiak and Cane (1987). The so-called delayed oscillator
theory was proposed in Suarez and Schopf (1988). Battisti
and Hirst (1989) introduce the delayed negative feedback for
the phase transition, where the core idea is the delayed ef-
fect of equatorial ocean waves. Based on the simulation of
the ZC model, the well-known recharge-oscillator theory was
first developed heuristically by Jin (1997a, b), where the key
process is the zonal mean thermocline variation. Meanwhile,
the ZC model is also the first intermediate coupled ocean–
atmosphere numerical model used widely for ENSO fore-
casting. After it was proposed in Zebiak and Cane (1987),
there were many improvements in its predictability. The ini-
tialization procedure that incorporates the air–sea coupling
was designed by Chen et al. (1995), which substantially im-
proves the predictability of the ZC model. To predict the
ENSO event, the ZC model was further improved by assim-
ilating observed sea level data in Chen et al. (1998). The
LDEO5 version of the ZC model was exploited in Chen et al.
(2004), which successfully predicts all prominent El Niño
events within the period 1857 to 2003 at lead times of up to
2 years.

In numerical prediction, a key issue that we often meet is
the short-term behavior of a predictive model with imperfect
initial data. In other words, it is of vital importance to under-
stand the sensitivity of the numerical models to errors in the
initial data. The simplest and most practical way is to esti-
mate the likely uncertainty for the initial data polluted by the
most dangerous errors. Currently, the conventional approach
to capture the optimal initial perturbation is the so-called
conditional nonlinear optimal perturbation (CNOP) approach
innovatively introduced in Mu et al. (2003), which is based
on nonlinear optimization methods. In the study Duan et al.
(2004), it was found that the CNOP approach using ZC-
specified climatology with the seasonal cycle as the basic

state produces optimal initial errors, which act as the opti-
mal precursors for triggering ENSO events. Further investi-
gation in Mu et al. (2007) indicates that the optimal precur-
sors are likely to contribute to the emergence of a signifi-
cant spring predictability barrier (SPB). The SPB refers to a
phenomenon in climate science where the predictability of
systems, such as El Niño or La Niña, significantly decreases
during the spring season. This is likely due to the transi-
tional nature of spring for ENSO, where signals are weak
and noise is high, making predictions more challenging. Ad-
ditionally, Duan et al. (2008) recognized the decisive role of
nonlinear temperature advection, and Yu et al. (2009) dis-
covered two kinds of CNOP-type initial errors, a large-scale
zonal dipolar pattern for the SST anomalies and a basin-side
deepening or shoaling along the Equator for the thermocline
depth. The study by Mu et al. (2014) verified that the opti-
mal precursors obtained in the ZC model exhibit significant
similarity with the optimal initial growth errors, which are
obtained by considering the ENSO events triggered the op-
timal precursors as a basic state. In addition, ideas based on
the CNOP approach, or more general nonlinear optimization
methods, have been generalized to rectify the model errors
on the forecast of ENSO diversity in the ZC model, such as
the SST cold-tongue cooling bias condition for the frequent
occurrence of the central Pacific (CP)-type El Niño events
in Duan et al. (2014) and the nonlinear forcing singular vec-
tor (NFSV) perturbation that can distinguish the two kinds
of El Niño events, the CP-type El Niño and the east Pacific
(EP)-type El Niño in Tao et al. (2020). Furthermore, an en-
semble NFSV data assimilation approach is developed to ad-
dress the ENSO forecast uncertainties caused by SPB and El
Niño diversity (Zheng et al., 2023). Within the field of fluid
mechanics, turbulence is widely regarded as a crucial and
highly influential topic. The study of optimal energy growth
was initially explored using the non-normal mode method
in the seminal work by Reddy and Henningson (1993). Ad-
ditionally, the scientific community has also developed the
CNOP approach to investigate the disturbance of least am-
plitude for transition to turbulence. The CNOP approach, as
described in Pringle and Kerswell (2010), Cherubini et al.
(2010), and Monokrousos et al. (2011), identifies the opti-
mal precursors, referred to as minimal seeds, for the transi-
tion to turbulence. Nonlinear nonmodal analysis is applied to
the 3D Navier–Stokes equation for an incompressible fluid
to determine the optimal energy growth over all disturbances
with a given starting energy and time horizon (Pringle and
Kerswell, 2010; Cherubini et al., 2010; Monokrousos et al.,
2011). Further details can be found in a comprehensive re-
view (Kerswell, 2018) and an earlier review (Kerswell et al.,
2014).

CNOPs are often obtained by implementing nonlinear
optimization methods, mainly including the spectral pro-
jected gradient (SPG) method (Birgin et al., 2000), se-
quential quadratic programming (SQP) (Barclay et al.,
1998), the limited-memory Broyden–Fletcher–Goldfarb–
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Shanno (BFGS) algorithm (Liu and Nocedal, 1989), and the
traditional method of Lagrange multipliers in practice.2 As
we know, the final state is the nonlinear evolution of the
initial data polluted by some dangerous errors via a cou-
ple of nonlinear partial differential equations and some more
complex parameterization models. Thus, the direct numer-
ical computation of the gradient is so extremely expensive
with the increase in degrees of freedom that it is unavailable
in practice, since it needs to compute the Jacobian of the fi-
nal reference state on the initial errors. The most popular and
practical way to numerically approximate the gradient is the
so-called adjoint technique, where the core is to exploit the
adjoint model (Kalnay, 2003). Generally, the adjoint method
reduces the computation time significantly at the cost of mas-
sive storage space to save the basic state. Even though a large
amount of storage space has not been an essential issue based
on the capabilities of modern computers, the adjoint model
is still unusable for many numerical models, since the ad-
joint models are hard to develop, especially for the coupled
ocean–atmosphere models as well as the parameterization
models (Wang et al., 2020). Based on state-of-the-art statisti-
cal machine learning techniques, Shi and Sun (2023) propose
the sampling algorithm to compute CNOPs, which is prone to
implementation in practice. Shi and Sun (2023) has success-
fully shown the efficiency of the sampling algorithm in the
theoretical models, such as the Burgers equation with small
viscosity and the Lorenz-96 model. Moreover, the computa-
tion time is shortened to the utmost at the cost of losing little
accuracy. In this paper, we further implement the sampling
algorithm to obtain CNOPs in the realistic and predictive ZC
model. Meanwhile, we show the efficiency of the sampling
method by comparison with the adjoint method and discuss
its available implementation in practice with modern paral-
lel computation techniques. In addition, we also provide a
positive answer for the open question of whether there exists
an adjoint-free algorithm to obtain CNOPs directly for the
numerical models with a number O(104

− 105) of degrees
of freedom, which has already been listed in Mu and Qiang
(2017), Kerswell (2018), and Wang et al. (2020).

The paper is organized as follows. Section 2 briefly de-
scribes how to numerically compute optimal precursors of
the ENSO events in the ZC model, which includes the basic

2It is worth noting that the first-order optimization method em-
ployed to obtain the maximum in the scientific community of fluid
mechanics is the method of Lagrange multipliers (Kerswell, 2018),
which has shown consistent results when compared to another first-
order optimization method mentioned in the next paragraph. The
method of Lagrange multipliers is a classical method to solve the
constrained optimization problem. It involves transforming the con-
strained optimization problem into an unconstrained one by in-
corporating the constrained condition into the Lagrange multipli-
ers (Nocedal and Wright, 1999, Chap. 12). Additionally, the adjoint
method is also explored to numerically compute the gradient. The
details of the solution procedure can be found in Kerswell (2018,
Sect. 3.2).

CNOP settings and the implementation of the sampling algo-
rithm as well as how to carry it out by parallel computation
in practice. The numerical performance of the sampling al-
gorithm with the comparison of the adjoint method for the
ZC model, in terms of the statically spatial patterns and the
dynamical nonlinear time evolution behaviors as well as the
corresponding quantities and indices, is shown in Sect. 3. Fi-
nally, we conclude this paper with a brief summary and dis-
cussion on some further research in Sect. 4.

2 Optimal precursors via CNOP and sampling

In this section, we first briefly describe the basic process to
compute the optimal precursors by the use of the CNOP ap-
proach in the ZC model.3 Then, based on the key character-
istic that the samples are independently and identically dis-
tributed, we point out that the sampling method can be im-
plemented efficiently by parallel computation and provide a
detailed discussion.

2.1 Basic CNOP settings

Let T ′ = (T ′ij ) and H ′ = (H ′ij ) be SST anomalies and ther-
mocline depth anomalies respectively,4 where the index i in-
dicates the longitudinal grids in the region from 129.375° E
to 84.375° W with the grid space 5.625°, and the index j
indicates the latitudinal grids from 19° S to 19° N with the
grid space 2°. From the classical references (Wang and Fang,
1996; Mu et al., 2007), we know that the characteristic scales
of the SST anomalies and the thermocline depth anoma-
lies are |T ′| ∼ 2 °C and |H ′| ∼ 50 m, respectively. Then, the
nondimensionalized quantities of the SST anomalies and the
thermocline depth anomalies are given as

T =
T ′

|T ′|
=

T ′

2°C
and H =

H ′

|H ′|
=

H ′

50m
. (1)

Moreover, in the ZC model, the dominant factors that influ-
ence the ENSO events are the SST anomalies and the thermo-
cline depth anomalies (Zebiak and Cane, 1987). With Eq. (1),
the initial errors that we need to consider should include these
two variables as u0 = (T (0),H (0)). For the quantity used to
measure, we adopt the standard Euclidean norm as

‖u0‖ = ‖(T (0),H (0))‖ =
√∑

i,j

[
T (0)2

ij +H (0)2
ij

]
. (2)

Next, we consider the objective function that is on the ini-
tial errors. As our primary concern is maximizing the target

3Although the CNOP approach has been extended to investigate
the influences of boundary errors and model errors on atmospheric
and oceanic models (Wang et al., 2020), here we only explore the
impact of initial errors.

4Throughout the paper, all vectors are denoted by bold italics.
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quantity solely dependent on the nonlinear evolution state of
the SST anomalies, we define the objective function as

J (u0)= ‖T (u0,τ )‖2, (3)

where ‖·‖ is still the Euclidean norm, and τ is the prediction
time set as 9 months in this paper. With Eqs. (2) and (3), we
derive the constrained nonlinear optimization problems for
the optimal precursors (that is, CNOPs in the ZC model) as

max
‖u0‖≤δ

J (u0), (4)

where the constraint parameter is set as δ = 1.0.

2.2 The sampling method and parallel computation

Based on Stokes’ formula, Shi and Sun (2023) propose the
sampling algorithm, which reduces the gradient to the func-
tion value in the sense of expectation. Simply speaking, we
consider the average of the function values in a small ball
instead of the exact function value. The rigorous representa-
tion is to take the expectation of the function values in the
following way as

Ĵ (u0)= Ev0∈Bd [∇J (u0+ εv0)] , (5)

where Bd is the unit ball in Rd , and ε > 0 is a small real num-
ber. According to Stokes’ formula, we can derive the gradient
of the expectation shown by Eq. (5) as

∇Ĵ (u0)= Ev0∈Bd [∇J (u0+ εv0)]=
d

ε

·Ev0∈Sd−1 [J (u0+ εv0)v0] , (6)

where Sd−1 is the (d−1)-dimensional unit sphere. Following
the expression in Eq. (6), we can take the sample average to
numerically approximate the gradient as

∇Ĵ (u0)≈
d

nε

n∑
i=1

[
J (u0+ εv0,i)v0,i

]
, (7)

where n is the number of samples, and v0,i, (i = 1, . . .,n) de-
notes the random variables identically sampled from the uni-
form distribution on the unit sphere Sd−1. By utilizing the
sample average of function values (7) as an approximate gra-
dient, we can employ various gradient accent methods within
the constraint domain, such as SPG, SQP, BFGS, and the La-
grange multiplier method, which help us maximize the ob-
jective function J (u0). In this paper, the specific gradient ac-
cent method within the constraint domain that we utilize is
the second spectral projected gradient (SPG2) method men-
tioned, as mentioned in Birgin et al. (2000). The rigorous
Chernoff-type bound for the sample average with the exact
gradient has been derived in Shi and Sun (2023, Sect. 3 and
Appendix A).

The average of the function values (Eq. 7) indicates that
the random variables v0,i, (i = 1, . . .,n) are independently

sampled from the uniform distribution on the unit sphere
Sd−1. This means that for any two samples, v0,i and v0,j ,
where the indices i and j satisfy i 6= j , there is no relation-
ship between them. In other words, every sample v0,i, (i ∈
{1, . . .,n}) has no influence on others and is drawn inde-
pendently. With modern parallel computation techniques, it
is possible to run the numerical model and obtain the val-
ues J (u0+ εv0,i)v0,i for each i ∈ {1, . . .,n} simultaneously,
assuming unlimited computational resources are available.
This parallelization allows for efficient computation and re-
duces the time required to run n instances of the numerical
model to that of running the model only once. However, it is
important to note that in the adjoint method, the process of
running the numerical model involves two consecutive steps.
Initially, there is a forward numerical integration from 0 to
τ , followed by a backward numerical integration from τ to
0. These computations are based on the data obtained by
running the numerical model. This process is executed in a
single-thread manner, meaning that parallel computation is
not applicable. On the other hand, in the implementation of
the sampling algorithm, the process of running the numerical
model only requires forward numerical integration from 0 to
τ , without any backward numerical integration. This implies
that for each sample, we only need to run the forward nu-
merical integration once. Since the samples are independent,
we can leverage the parallel computation to implement the
sampling algorithm, which further reduces the time required
for running the forward numerical integration once. With the
current resource of computation, we have successfully im-
plemented the sampling algorithm to obtain CNOPs or the
optimal precursors of the ZC model. This numerical model
has a substantial number of degrees of freedom, estimated to
be on the order of O(104

−105). The implementation utilizes
the modern parallel computation technique. The numerical
performance, including the spatial patterns, objective values,
computation times, and nonlinear evolution of Niño 3.4 in-
dex, is shown in Sect. 3.

3 Numerical performance

After the CNOP approach is imported to the ZC model (Mu
et al., 2007), the adjoint method has always been the baseline
algorithm in practice. In this section, we show the numer-
ical performance of the sampling algorithm by comparison
with the adjoint method in the ZC model. The static spatial
patterns of the optimal precursors with some measurement
quantities and computation times are shown in Sect. 3.1,
while the nonlinear time evolution behaviors of the optimal
precursors and the corresponding Niño 3.4 SST anomaly in-
dex are shown in Sect. 3.2.

3.1 Optimal precursors in the ZC model

Recall the optimal precursors bringing about the El Niño
event, which is obtained by the CNOP approach in Yu et al.
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Figure 1. The spatial patterns of the optimal precursors in terms of SST anomalies (a) and thermocline depth anomalies (b). The prediction
time is 9 months. By the rows from top to bottom, the spatial patterns are obtained by the adjoint method, the sampling method with n= 1000,
and the method with n= 200, respectively.

(2009). The spatial pattern in terms of SST anomalies is man-
ifested as a large-scale zonal dipolar pattern, the warm pole
of about 0.2 °C along the Equator in the east Pacific, and the
cold one of about 0.2 °C in the central Pacific, while a basin-
side deepening about 100m along the Equator is the charac-
ter of that for thermocline depth anomalies. We reproduce the
spatial patterns of the optimal precursors bringing about the
El Niño event in Fig. 1, the two pictures in the top row. When
we take 1000 samples to implement the sampling method,
both the spatial patterns of the optimal precursors in terms of
SST anomalies and thermocline depth anomalies are almost
identical to those obtained by the adjoint method, shown in
the middle row of Fig. 1. Furthermore, when the number of
samples is reduced from 1000 to 200, we can find from the
two pictures in the bottom row of Fig. 1 that both the large-
scale zonal dipolar pattern of SST anomalies and the basin-
side deepening pattern of thermocline depth anomalies for
the optimal precursors leading to the El Niño event can be
still captured, even though there are some small deviations
due to some noise.

We have shown considerable similarities in the spatial pat-
terns of the optimal precursors bringing about the El Niño

event in Fig. 1, which are obtained by the adjoint method,
the sampling method with n= 1000, and the method with
n= 200. If these can be viewed as qualitative similarities,
we still need to verify the similarities of the optimal precur-
sors from these numerical algorithms quantitatively. The ob-
jective values J (u0) obtained using the optimal precursors
u0 computed by both the adjoint method and the sampling
method are shown in Table 1, where we can find that the
value computed by the adjoint method is 16.8441, and the
values by the sampling method with n= 1000 and n= 200
are 16.6307 and 15.4193, respectively. The objective values
obtained by the sampling algorithm look very close to the one
of the baseline adjoint method. Here, we can further show the
similarities by taking the ratio between them. If the objective
value obtained by the adjoint method is taken as the numera-
tor, we can find that the objective value obtained by the sam-
pling method with n= 1000 takes the percentage 98.73%,
which shows that the objective values obtained by the two al-
gorithms are almost identical. When the number of samples
is reduced from 1000 to 200, the percentage that the objec-
tive value obtained by the sampling algorithm occupies de-
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Table 1. The optimal precursors u0 are computed by both the adjoint method and the sampling method, with the corresponding spatial
patterns shown in Fig. 1. First line: the objective values J (u0) computed in Eq. (4). Second line: the percentages over the values computed
by the adjoint method. Bold highlights the high efficiency of the sampling method with n= 200.

Objective methods Adjoint Sampling (n= 1000) Sampling (n= 200)

Values (J (u0)= ‖T (τ )‖2) 16.8441 16.6307 15.4193
Percentage 100% 98.73% 91.54%

creases to 91.54%, which is still more than 90% and shows
quite high similarities.

Both the spatial patterns and the objective values indi-
cate that the optimal precursor obtained through the sam-
pling algorithm, using only 200 samples, is very similar to
the one obtained through the baseline adjoint algorithm. To
show the efficiency of the sampling method, a comparison of
computation times is necessary. As mentioned in Sect. 2.2,
the sampling algorithm, implemented with parallel computa-
tion, reduces the computation of the gradient by performing
a single forward numerical integration. In contrast, the ad-
joint method requires a two-step process involving both for-
ward and backward numerical integrations. We have realized
them and recorded the computation times of both the adjoint
method and the sampling algorithm implemented with paral-
lel computation in Table 2.

It needs to take about 50 iterations by implementing both
the adjoint method and the sampling method to get the op-
timal precursors. On the supercomputer, the adjoint method
takes about 15 s (that is, about 0.3 s per iteration), while the
sampling method takes about 3 s when the implementation
is under the parallel computation (that is, about 0.06 s per
iteration). Furthermore, when the sampling method is im-
plemented, we avoid running the numerical model reversely
such that the computation time is shortened to 1/5. With-
out any doubt, the computation that is reduced must be im-
plemented by parallel computation. However, based on the
current resource of computation, it is available for us to im-
plement the sampling method under the parallel computation
to obtain the optimal precursors by the use of the CNOP ap-
proach in the ZC model and, more generally, the numerical
model with a number O(104

− 105) of degrees of freedom.

3.2 Nonlinear time evolution behavior of the optimal
precursors

Based on the CNOP approach, the statically spatial patterns
of the optimal precursors of ENSO events are in terms of
both SST anomalies and thermocline depth anomalies. In
Sect. 3.1, we showed the high efficiency of the sampling al-
gorithm by the comparison with that obtained by the baseline
adjoint method as well as the computation times. However,
we still need to study the dynamic behaviors of the ENSO
events to predict the potential impacts, where a great way is
to only monitor the nonlinear evolution of SST anomalies.

Recall the nonlinear time evolution of SST anomalies sim-
ulated by the coupled ocean–atmosphere ZC model shown
in Yu et al. (2009), where the optimal precursor, or CNOP,
is obtained by the adjoint method. By adding the initial opti-
mal precursors to the climatological mean equilibrium state,
we run the ZC model to reproduce the EP-type El Niño phe-
nomenon in the left column of Fig. 2, where we observe that
the warm phase in the east Pacific along the Equator is in-
tensified gradually with the season evolution in 1 year; that
is, the lead time is set as 3, 6, 9, and 12 months, respec-
tively. More concretely, in the east Pacific along the Equator,
the region of the warm phase is gradually enlarged and the
SST anomalies are raised up sharply from about 0 to 8°C.
In the right two columns of Fig. 2, we show the spatial pat-
terns in terms of the nonlinear time evolution of SST anoma-
lies, where the initial condition starts from the climatological
mean equilibrium state added by the initial optimal precur-
sors obtained by the sampling methods with n= 1000 and
n= 200. By taking a comparison between the spatial pat-
terns shown from the left to the right in Fig. 2, the nonlinear
time evolution behaviors of the initial optimal precursors are
also remarkably similar to each other with the change of sea-
sons. Even though the number of samples is reduced to 200,
we still find that the spatial patterns in terms of the seasonal
evolution of SST anomalies are almost consistent with the
baseline pattern, starting from initial optimal precursors ob-
tained by the adjoint method.

Based on the nonlinear time evolution of SST anomalies
simulated in Fig. 2, we have qualitatively shown the similar-
ities of the dynamical behaviors of the initial optimal precur-
sors obtained by both the baseline adjoint method and the
sampling method. Nevertheless, we still need to show the
similarities quantitatively for the dynamical evolution of SST
anomalies from the three kinds of initial optimal precursors.

Currently, the main variable that is considered from the
ENSO forecasts of the coupled climate models is the Niño
3.4 SST anomaly index, which is used by the National Cli-
mate Centre (NCC) in Australia to classify ENSO conditions.
Here, we show that the Niño 3.4 SST anomaly indices change
nonlinearly along the time evolution line within a model
year in Fig. 3, where the three dynamical curves generated
by these proposed algorithms are quite close to each other.
Furthermore, we can observe in Fig. 3 that the dynamical
curve of the Niño 3.4 SST anomaly index starting from the
initial optimal precursor obtained by the sampling method
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Table 2. The comparison of computation times between the adjoint method and the sampling method under the parallel computation. The
Fortran code was run on the following CPU: Intel® Xeon® Gold 6132 Processor, 19.25M Cache, 2.60 GHz, with eight nodes and 28 cores
per node.

Methods Adjoint Sampling (parallel computation)

Computation time (50 iterations) ≈ 15 s ≈ 3 s
Computation time per iteration ≈ 0.3 s ≈ 0.06 s

Figure 2. The spatial patterns of the nonlinear time evolution of the optimal precursors in terms of SST anomalies.

with n= 1000 almost coincides with the baseline one from
the initial optimal precursor obtained by the adjoint method.
When the number of samples is reduced from 1000 to 200,
some small deviations appear in the dynamical curve of the
Niño 3.4 SST anomaly index. Thus, it is necessary for us to
quantify these derivations such that we can study the accu-
racy of the Niño 3.4 SST anomaly index by implementing
the sampling algorithm to approximate that generated by the
adjoint method when the number of samples is reduced from
1000 to 200. Taking the Niño 3.4 SST anomaly index gen-
erated by the adjoint method as a basis, we compute the rel-
ative Niño 3.4 SST anomaly index, that is, the difference of
the Niño 3.4 SST anomaly indices from between the baseline
adjoint method and the sampling method in Fig. 4.

Here, we can find that the relative Niño 3.4 SST anomaly
index from the sampling method with n= 1000 takes the
characteristic scale with O(10−2), while that from the sam-
pling method with n= 200 is O(10−1). In other words, when

we implement the sampling method by reducing the number
of samples from n= 1000 to n= 200, the relative Niño 3.4
SST anomaly index is degraded from O(10−2) to O(10−1),
which quantitatively manifests that the accuracy of the Niño
3.4 SST anomaly index is loosened up to an order of magni-
tude. However, if we take the comparison with the Niño 3.4
SST anomaly index, whose characteristic scale is O(1), the
numerical errors by reducing the number of samples from
1000 to 200 are still too small to influence the nonlinear time
evolution of SST anomalies.

4 Summary and discussion

Based on state-of-the-art statistical machine learning tech-
niques, the sampling method to compute CNOPs is proposed
in Shi and Sun (2023). In this paper, we successfully imple-
ment the sampling method to obtain the initial optimal pre-
cursors in the realistic and predictive ZC model and, more
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generally, the numerical model with a number O(104
− 105)

of degrees of freedom. The sampling method with fewer
samples can achieve consistent performance with the adjoint
method in the numerical experiments, regardless of the stat-
ically spatial patterns and the dynamical nonlinear time evo-
lution behaviors, as well as the corresponding quantities and
indices. By leveraging the key characteristic that the sam-
ples are independently and identically distributed, we can ef-
fectively implement the sampling method using the modern
parallel computation technique. This approach eliminates the
need to run the numerical model in reverse, leading to a sig-
nificant reduction in computation time. In fact, the computa-
tion time can be shortened by approximately 1/5, allowing
for more efficient and faster processing. In general, the num-
ber of samples required for a numerical model depends on
the degrees of freedom. As the degrees of freedom increase,
a larger number of samples is typically needed. However, the
nonlinear evolution of the initial values within the numerical
model itself should not be overlooked. This has been em-
pirically demonstrated in a comparison between the Burgers
equation and the Lorenz-96 model (Shi and Sun, 2023). In
the case of the Burgers equation, which exhibits weak non-
linear evolution, achieving the desired experimental effect
can be accomplished with just five samples, even with 100
degrees of freedom. On the other hand, the 40-dimensional
Lorenz-96 model, characterized by strong nonlinear evolu-
tion, also requires five samples to achieve the desired effect.
Based on empirical observations, a good strategy for initial
experiments is to choose the number of samples to be approx-
imately equal to the square root of the number of degrees of
freedom, that is, n≈

√
d . Indeed, by implementing the sam-

pling algorithm with 60 samples, we are able to achieve a
numerical performance that nearly reproduces the results ob-
tained by the baseline adjoint method for the optimal pre-
cursors. However, it has been observed that the numerical
results are unstable. Out of four runs, only one consistently
produces correct numerical performance. In addition, by the
use of the CNOP approach in the coupled ocean–atmosphere
ZC model, we can obtain another kind of optimal precursors
which lead to the La Niña event. However, due to the defi-
ciency of the original ZC model in Zebiak and Cane (1987),
a warm tendency of the Niño 3.4 SST anomaly index will
appear after it decreases to the coldest point for the La Niña
event, which is shown in Duan et al. (2008). In our numerical
experiments, the numerical performance based on the opti-
mal precursors leading to the La Niña event can also be ob-
tained. Thus, these numerical experiments are not represen-
tative, so we neglect to show their numerical performance in
the paper.

For a realistic global climate system model (GSCM) or
atmosphere–ocean general circulation model (AOGCM), it
is often impractical to develop the adjoint model, so the sam-
pling method provides a probable way of computing CNOPs
to investigate its predictability. An interesting direction for
further research is to investigate CNOPs computed by the

Figure 3. The nonlinear time evolution of the Niño 3.4 SST
anomaly index within a model year. The bars represent the range
of errors obtained from running the sampling method 50 times.

Figure 4. The nonlinear time evolution of relative Niño 3.4 SST
anomaly index within a model year (the Niño 3.4 SST anomaly in-
dex obtained by the sampling method minus that by the baseline ad-
joint method). The bars represent the range of errors obtained from
running the sampling method 50 times.

sampling method in the numerical models that are used in re-
alistic prediction and forecast, such as the Weather Research
and Forecasting (WRF) model, a state-of-the-art mesoscale
numerical weather prediction system for operational fore-
casting applications. Another interesting direction is to at-
tempt to use the sampling method to realize a more (or less)
nonlinearly stable flow by changing some aspect of the sys-
tem (Cherubini and De Palma, 2013; Rabin et al., 2014; Pas-
saggia and Ehrenstein, 2013), where the adjoint technique
still needs to make costly optimization calculations (Ker-
swell, 2018). In addition, the traditional data assimilation
is based on the development of the adjoint model (Kalnay,
2003). In this paper, our numerical experiments allow the
four-dimensional variational (4D-Var) data assimilation tech-
nique to become available for the coupled climate system
models as well as the parameterization models. Therefore,
it is valuable and thrilling to implement the sampling method
to process 4D-Var data assimilation in realistic systems,
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such as the Flexible Global Ocean-Atmosphere-Land System
(FGOALS)-s2 (Wu et al., 2018) for decadal climate predic-
tion. Finally, we conclude this paper with a statement that the
sampling method, based on state-of-the-art machine learn-
ing techniques, is a probable way to realize the nonlinear
optimization method in practice to address these challenges
in Kerswell (2018) and Wang et al. (2020).
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