Articles | Volume 29, issue 3
Nonlin. Processes Geophys., 29, 255–264, 2022
https://doi.org/10.5194/npg-29-255-2022
Nonlin. Processes Geophys., 29, 255–264, 2022
https://doi.org/10.5194/npg-29-255-2022
Research article
05 Jul 2022
Research article | 05 Jul 2022

Predicting sea surface temperatures with coupled reservoir computers

Benjamin Walleshauser and Erik Bollt

Related authors

An early warning sign of critical transition in the Antarctic ice sheet – a data-driven tool for a spatiotemporal tipping point
Abd AlRahman AlMomani and Erik Bollt
Nonlin. Processes Geophys., 28, 153–166, https://doi.org/10.5194/npg-28-153-2021,https://doi.org/10.5194/npg-28-153-2021, 2021
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Using neural networks to improve simulations in the gray zone
Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, and George Craig
Nonlin. Processes Geophys., 29, 171–181, https://doi.org/10.5194/npg-29-171-2022,https://doi.org/10.5194/npg-29-171-2022, 2022
Short summary
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2021-36,https://doi.org/10.5194/npg-2021-36, 2022
Revised manuscript accepted for NPG
Short summary
The blessing of dimensionality for the analysis of climate data
Bo Christiansen
Nonlin. Processes Geophys., 28, 409–422, https://doi.org/10.5194/npg-28-409-2021,https://doi.org/10.5194/npg-28-409-2021, 2021
Short summary
Producing realistic climate data with generative adversarial networks
Camille Besombes, Olivier Pannekoucke, Corentin Lapeyre, Benjamin Sanderson, and Olivier Thual
Nonlin. Processes Geophys., 28, 347–370, https://doi.org/10.5194/npg-28-347-2021,https://doi.org/10.5194/npg-28-347-2021, 2021
Short summary
Identification of droughts and heatwaves in Germany with regional climate networks
Gerd Schädler and Marcus Breil
Nonlin. Processes Geophys., 28, 231–245, https://doi.org/10.5194/npg-28-231-2021,https://doi.org/10.5194/npg-28-231-2021, 2021
Short summary

Cited articles

Bollt, E.: On explaining the surprising success of reservoir computing forecaster of chaos? The universal machine learning dynamical system with contrast to VAR and DMD, Chaos, 31, 013108, https://doi.org/10.1063/5.0024890, 2021. a, b
Case, J. L., Santos, P., Lazarus, S. M., Splitt, M. E., Haines, S. L., Dembek, S. R., and Lapenta, W. M.: A Multi-Season Study of the Effects of MODIS Sea-Surface Temperatures on Operational WRF Forecasts at NWS Miami, FL, New Orleans, LA, https://ntrs.nasa.gov/citations/20080014843 (last access: 29 June 2022), 2008. a
Collins, D. C., Reason, C. J. C., and Tangang, F.: Predictability of Indian Ocean sea surface temperature using canonical correlation analysis, Clim. Dynam., 22, 481–497, https://doi.org/10.1007/s00382-004-0390-4, 2004.  a
Dado, J. M. B. and Takahashi, H. G.: Potential impact of sea surface temperature on rainfall over the western Philippines, Prog. Earth Planet. Sci., 4, 23, https://doi.org/10.1186/s40645-017-0137-6, 2017. a
Gauthier, D. J., Bollt, E., Griffith, A., and Barbosa, W. A. S.: Next generation reservoir computing, Nat. Commun., 12, 5564, https://doi.org/10.1038/s41467-021-25801-2, 2021. a
Download
Short summary
As sea surface temperature (SST) is vital for understanding the greater climate of the Earth and is also an important variable in weather prediction, we propose a model that effectively capitalizes on the reduced complexity of machine learning models while still being able to efficiently predict over a large spatial domain. We find that it is proficient at predicting the SST at specific locations as well as over the greater domain of the Earth’s oceans.