Chen, Y., Wiesel, A., and Hero, A. O.: Shrinkage estimation of high dimensional covariance matrices, in: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 19–24 April 2009, Taipei, Taiwan, IEEE, 2937–2940,
https://doi.org/10.1109/ICASSP.2009.4960239, 2009.
a,
b,
c
Computational Science Laboratory: ODE Test Problems, GitHub [code],
https://github.com/ComputationalScienceLaboratory/ODE-Test-Problems/releases/tag/v0.0.1 (last access: 10 June 2022), 2020.
a,
b
Computational Science Laboratory: DA Tools, GitHub [code],
https://github.com/ComputationalScienceLaboratory/DATools/releases/tag/2022-06-10, last access: 10 June 2022. a
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res.-Oceans, 99, 10143–10162, 1994. a
Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–757, 1999.
a,
b
Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D, 230, 112–126, 2007.
a,
b,
c
Lorenc, A. C., Bowler, N. E., Clayton, A. M., Pring, S. R., and Fairbairn, D.: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP, Mon. Weather Rev., 143, 212–229, 2015. a
Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 1963. a
Lorenz, E. N.: Predictability: A problem partly solved, in: Proc. Seminar on Predictability, 4–8 September 1995, Shinfield Park, Reading, UK, vol. 1, 1996. a
McCann, R. J. and Guillen, N.: Five lectures on optimal transportation: geometry, regularity and applications, Analysis and geometry of metric measure spaces: lecture notes of the séminaire de Mathématiques Supérieure (SMS) Montréal, 145–180,
https://doi.org/10.1090/crmp/056/06, 2011.
a
Musso, C., Oudjane, N., and Le Gland, F.: Improving regularised particle filters, in: Sequential Monte Carlo methods in practice, Springer, 247–271,
https://doi.org/10.1007/978-1-4757-3437-9_12, 2001.
a
Nino-Ruiz, E. D. and Sandu, A.: An ensemble Kalman filter implementation based on modified Cholesky decomposition for inverse covariance matrix estimation, arXiv [preprint],
arXiv:1605.08875, 28 May 2016.
a,
b
Nino-Ruiz, E. D. and Sandu, A.: Efficient parallel implementation of DDDAS inference using an ensemble Kalman filter with shrinkage covariance matrix estimation, Cluster Comput., 22, 2211–2221,
https://doi.org/10.1007/s10586-017-1407-1, 2019.
a
Nino-Ruiz, E. D., Sandu, A., and Anderson, J. L.: An efficient implementation of the ensemble Kalman filter based on an iterative Sherman–Morrison formula, Stat. Comput., 25, 561–577,
https://doi.org/10.1007/s11222-014-9454-4, 2014.
a
Nino-Ruiz, E. D., Sandu, A., and Deng, X.: A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition, in: Proceedings of the 6th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, Supercomputing 2015 of ScalA '15, 15 November 2015, Austin, Texas,
https://doi.org/10.1145/2832080.2832084, 2015.
a
Olver, F. W., Lozier, D. W., Boisvert, R. F., and Clark, C. W.: NIST handbook of mathematical functions hardback and CD-ROM, Cambridge university press, ISBN 978-0521140638, 2010. a
Petrie, R.: Localization in the ensemble Kalman filter, MSc Atmosphere, Ocean and Climate University of Reading,
http://www.met.rdg.ac.uk/mscdissertations/Localization%20in%20the%20ensemble%20Kalman%20Filter.pdf (last access: 16 June 2022), 2008.
a,
b
Popov, A. A. and Sandu, A.: An Explicit Probabilistic Derivation of Inflation in a Scalar Ensemble Kalman Filter for Finite Step, Finite Ensemble Convergence, arXiv [preprint],
arXiv:2003.13162, 29 March 2020.
a,
b
Popov, A. A., Sandu, A., Nino-Ruiz, E. D., and Evensen, G.: A Stochastic Covariance Shrinkage Approach in Ensemble Transform Kalman Filtering, arXiv [preprint],
arXiv:2003.00354, 29 February 2020.
a,
b,
c
Popov, A. A., Bhattacharjee, A., Subrahmanya, A. N., and Sandu, A.: ComputationalScienceLaboratory/DATools: v0.0.1 (v0.0.1), Zenodo [code],
https://doi.org/10.5281/zenodo.6676745, 2022.
a
Rao, V., Sandu, A., Ng, M., and Nino-Ruiz, E. D.: Robust Data Assimilation using
L1 and Huber norms, SIAM J. Sci. Comput., 39, B548–B570, 2017. a
Reich, S.: A nonparametric ensemble transform method for Bayesian inference, SIAM J. Sci. Comput., 35, A2013–A2024, 2013.
a,
b,
c,
d
Reich, S. and Cotter, C.: Probabilistic forecasting and Bayesian data
assimilation, Cambridge University Press,
https://doi.org/10.1017/CBO9781107706804, 2015.
a,
b,
c,
d,
e,
f
Roberts, S., Popov, A. A., and Sandu, A.: ODE Test Problems: a MATLAB suite of initial value problems, CoRR, arXiv [preprint],
arXiv:1901.04098, 14 January 2019.
a
Roberts, S., Popov, A. A., Sarshar, A., Gomillion, R., and Sandu, A.: ComputationalScienceLaboratory/ODE-Test-Problems: v0.0.1 (v0.0.1), Zenodo [code],
https://doi.org/10.5281/zenodo.6676706, 2022.
a
Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J.: Obstacles to high-dimensional particle filtering, Mon. Weather Rev., 136, 4629–4640,
2008. a
Strogatz, S. H.: Nonlinear dynamics and chaos with student solutions manual: With applications to physics, biology, chemistry, and engineering, CRC press, ISBN 978-0813349107, 2018. a
Tan, P.-N., Steinbach, M., Karpatne, A., and Kumar, V.: Introduction to Data Mining, 2nd edn., Pearson, ISBN 978-0133128901, 2018.
a,
b
van Kekem, D. L.: Dynamics of the Lorenz-96 model: Bifurcations, symmetries and waves, PhD thesis, University of Groningen, ISBN 978-94-034-0979-5, 2018. a
Van Leeuwen, P. J.: Particle filtering in geophysical systems, Mon. Weather Rev., 137, 4089–4114, 2009. a
Van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., and Reich, S.: Particle filters for high-dimensional geoscience applications: A review, Q. J. Roy. Meteor. Soc., 145, 2335–2365, 2019. a
Villani, C.: Topics in optimal transportation, American Mathematical Soc., 58, ISBN 978-1-4704-6726-5, 2003. a