Articles | Volume 29, issue 2
https://doi.org/10.5194/npg-29-241-2022
https://doi.org/10.5194/npg-29-241-2022
Research article
 | 
22 Jun 2022
Research article |  | 22 Jun 2022

A stochastic covariance shrinkage approach to particle rejuvenation in the ensemble transform particle filter

Andrey A. Popov, Amit N. Subrahmanya, and Adrian Sandu

Related authors

A Bayesian approach to multivariate adaptive localization in ensemble-based data assimilation with time-dependent extensions
Andrey A. Popov and Adrian Sandu
Nonlin. Processes Geophys., 26, 109–122, https://doi.org/10.5194/npg-26-109-2019,https://doi.org/10.5194/npg-26-109-2019, 2019
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary
Evolution of small-scale turbulence at large Richardson numbers
Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh
Nonlin. Processes Geophys., 31, 219–227, https://doi.org/10.5194/npg-31-219-2024,https://doi.org/10.5194/npg-31-219-2024, 2024
Short summary
How far can the statistical error estimation problem be closed by collocated data?
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398, https://doi.org/10.5194/npg-30-375-2023,https://doi.org/10.5194/npg-30-375-2023, 2023
Short summary

Cited articles

Acevedo, W., de Wiljes, J., and Reich, S.: Second-order accurate ensemble transform particle filters, SIAM J. Sci. Comput., 39, A1834–A1850, 2017. a, b, c, d, e, f
Aggarwal, C. C.: Neural networks and deep learning, Springer, https://doi.org/10.1007/978-3-319-94463-0, 2018. a
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001. a, b
Anderson, J. L.: Localization and sampling error correction in ensemble Kalman filter data assimilation, Mon. Weather Rev., 140, 2359–2371, 2012. a
Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, SIAM, https://doi.org/10.1137/1.9781611974546, 2016. a, b, c
Download
Short summary
Numerical weather prediction requires the melding of both computational model and data obtained from sensors such as satellites. We focus on one algorithm to accomplish this. We aim to aid its use by additionally supplying it with data obtained from separate models that describe the average behavior of the computational model at any given time. We show that our approach outperforms the standard approaches to this problem.