
Nonlin. Processes Geophys., 29, 241–253, 2022
https://doi.org/10.5194/npg-29-241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

A stochastic covariance shrinkage approach to particle rejuvenation
in the ensemble transform particle filter
Andrey A. Popov, Amit N. Subrahmanya, and Adrian Sandu
Computational Science Laboratory, Department of Computer Science, Virginia Tech,
2202 Kraft Drive, Blacksburg, VA 24060, USA

Correspondence: Andrey A. Popov (apopov@vt.edu)

Received: 20 September 2021 – Discussion started: 22 September 2021
Revised: 27 April 2022 – Accepted: 23 May 2022 – Published: 22 June 2022

Abstract. Rejuvenation in particle filters is necessary to pre-
vent the collapse of the weights when the number of par-
ticles is insufficient to properly sample the high-probability
regions of the state space. Rejuvenation is often implemented
in a heuristic manner by the addition of random noise that
widens the support of the ensemble. This work aims at im-
proving canonical rejuvenation methodology by the intro-
duction of additional prior information obtained from clima-
tological samples; the dynamical particles used for impor-
tance sampling are augmented with samples obtained from
stochastic covariance shrinkage. A localized variant of the
proposed method is developed. Numerical experiments with
the Lorenz ’63 model show that modified filters significantly
improve the analyses for low dynamical ensemble sizes.
Furthermore, localization experiments with the Lorenz ’96
model show that the proposed methodology is extendable to
larger systems.

1 Introduction

Ensemble-based data assimilation (Asch et al., 2016; Law
et al., 2015; Reich and Cotter, 2015) aims to estimate the
state of some dynamical system in a Bayesian framework
and describes the uncertainty through an ensemble of pos-
sible states. Describing the distribution of state uncertainty
to sufficient accuracy requires very large ensembles, a phe-
nomenon referred to as the curse of dimensionality (Tan
et al., 2018; Snyder et al., 2008). Several techniques such as
the principle of maximum entropy (Jaynes, 2003) attempt to
alleviate this burden by prescribing a distribution constrained
by known information. The ensemble Kalman filter (Burgers

et al., 1998; Evensen, 1994, 2009) constrains the underly-
ing distributions only by the ensemble mean and covariance;
the application of Bayes’ rule transforms an assumed prior
normal distribution into an assumed posterior normal distri-
bution.

Previous work (Popov et al., 2020) has focused on aug-
menting the information represented by the ensemble with
information derived from covariance shrinkage through a
surrogate ensemble in the ensemble transform Kalman fil-
ter. In this paper, we extend this idea to the ensemble trans-
port particle filter (ETPF, Reich, 2013). The ETPF transports
a given ensemble that represents the posterior distribution
using importance sampling (Liu, 2008) to another, equally
sampled, ensemble whose moments, in the limit of infinitely
many particles, approach the moments of the correct poste-
rior distribution. Like all particle filters, the ETPF is suscep-
tible to weight collapse. Recent attempts to apply particle fil-
ters to high-dimensional systems (Farchi and Bocquet, 2018;
Van Leeuwen, 2009; Van Leeuwen et al., 2019) have seen
some success. However, particle filters are not yet competi-
tive with other state-of-the-art methods such as the ensemble
Kalman filter.

This work explores a new approach to particle rejuvena-
tion, which is necessary to prevent weight collapse in particle
filters. Rejuvenation in particle filters is a particular type of
stochastic regularization (Musso et al., 2001) and is typically
implemented in a heuristic manner. Instead of heuristics, our
approach makes use of prior information to enrich the en-
semble subspace. The new contributions of this work are as
follows: (1) we introduce an alternative way of performing
particle rejuvenation in the ETPF by incorporating clima-
tological covariance information, (2) we accomplish this by
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augmenting the dynamical (model) ensemble with synthetic
anomalies with optimal scaling, accompanied by a statisti-
cally correct estimator, and (3) we show that this rejuvena-
tion method significantly improves the analysis quality for
low dynamical ensemble sizes.

This paper is organized as follows. Section 2 reviews the
concept of Bayesian inference with the addition of prior in-
formation and its implementation in the context of impor-
tance sampling. Section 3 discusses the ensemble transform
particle filter and its canonical rejuvenation heuristic. The
concept of stochastic covariance shrinkage is proposed in
Sect. 4, and the ETPF is extended to make use of this shrink-
age. Numerical experiment results are reported in Sect. 5.
Concluding remarks are given in Sect. 6.

2 Optimal coupling with prior information and the
ensemble transform particle filter

Bayesian inference (Jaynes, 2003) aims at transforming prior
information about the state of a system (represented by the
distribution of a random variable Xf), additional qualitative
and quantitative information (P ), and information obtained
by observing the system (Y ) into combined posterior infor-
mation (Xa):

π(X | Y,P )=
π(Y |X,P )π(X | P)

π(Y | P)
, (1)

where π(X | P) represents the prior state probability den-
sity conditioned by all other relevant information, and π(Y |
X,P ) is the observational likelihood conditioned by the fore-
cast Xf and the prior information P . Here we consider the
finite-dimensional case where Xf,Xa

∈ Rn, Y ∈ Rm, where
the supports of the prior and posterior probability densities
are subsets of the respective spaces.

Classical particle filtering (Reich and Cotter, 2015) rep-
resents state distributions by collections of particles, i.e., en-
sembles of samples. Specifically, consider an ensemble ofN f

particles Xf
= [Xf

1, . . .X
f
N f ] ∈ Rn×N

f
. The prior distribution

density is approximated weakly by the corresponding empir-
ical measure,

π̂(X | P)=

N f∑
j=1

wf
j δX−Xf

j
, (2)

where wf
j for 1≤ j ≤N f are the prior importance weights

associated with each particle such that
∑
iw

f
i = 1 and wf

i >

0. Similarly, the posterior density is approximated weakly by
an empirical measure based on the same sample values (par-
ticle states) but with different posterior importance weights
wa
j for 1≤ j ≤N f:

π̂(X | Y,P )=

N f∑
j=1

wa
j δX−Xf

j
. (3)

The posterior importance sampling weights are obtained
from Eq. (1):

wa
j ∝ π(Y |X

f
j ,P )π(X

f
j | P)= w

f
j π(Y |X

f
j ,P ). (4)

The ensemble of weights is denoted by w =

[w1, . . .wN f ]
T , and wf and wa refer to the forecast and

analysis weights, respectively. Using Eqs. (3) and (4),
unbiased empirical estimates of the posterior mean and
covariance,

xa
=

N f∑
j=1

wa
jX

f
j ,

6Xa =
1

1−wa,Twa Xf
(

diag
(
wa)
−wawa,T

)
Xf,T , (5)

respectively, are obtained by the importance sampling ap-
proach (Liu, 2008). The factor in front of the covariance es-
timate ensures that it is unbiased.

Our goal is to find an analysis ensemble Xa
∈ Rn×Na

of
Na
≤N f realizations of the random variable Xa that rep-

resents the posterior distribution πXa with equal weights.
Specifically, the posterior density is approximated weakly by
the empirical measure,

X̂a
∼ π̂(X | P)=

Na∑
j=1

1
Na δX−X

a
j
, (6)

where the importance sampling weights are uniform and
equal to 1/Na (so as to be equally likely), and X̂a is the ran-
dom variable corresponding to this measure which converges
weakly in distribution to the exact posterior random variable
Xa. We require that the empirical mean (5) is preserved by
Eq. (6),

xa
=

Na∑
j=1

1
NaX

a
j =

N f∑
j=1

wa
jX

f
j = Xfwa, (7)

meaning that the weighted mean of the forecast ensemble is
the mean of the analysis ensemble.

The optimal coupling (McCann, 1995; Reich and Cotter,
2015) between the prior empirical distribution Eq. (2) and
the posterior empirical distribution Eq. (6) can be defined as
an ensemble transformation,

Xa
= Xf T∗, (8)

where T∗ ∈ RN f
×Na

is the solution to the optimal transport
Monge–Kantorovich problem (Villani, 2003). It is important
to see that each element of T∗ is positive. The discrete opti-
mal transportation problem is

T∗ = argmin
T

∑
1≤j≤N f

1≤k≤Na

Tj,k
∥∥∥Xf

j −X
f
k

∥∥∥2

2

subject to T1Na =Nawa, TT 1N f = 1Na ,

Ti,j ≥ 0, (9)
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Figure 1. A visual representation of the continuous optimal trans-
port procedure. The probability distribution πXf is transported into
the distribution πXa through the optimal transport mapping T. The
discrete version of the solution is given by Eq. (9).

where the distance measure of squared Euclidean distance
is taken for a provably unique solution to the Monge–
Kantorovich problem to exist (McCann and Guillen, 2011).
The vector of ones of size q is represented by 1q . The prob-
lem Eq. (9) is a linear programming problem. A visualiza-
tion of the optimal transport between two continuous distri-
butions is given in Fig. 1.

The standard ETPF (Reich, 2013) makes the assumption
that the prior and posterior ensemble sizes are the same:
N :=Na

=N f in Eq. (9). In the ETPF, most other prior infor-
mation in P is typically ignored. The discrete optimal trans-
port Eq. (8) formulation begets a mapping Xa

=9N f,Na(Xf)

that, in the limit of ensemble size (N f
=Na

→∞), con-
verges weakly to a mapping9, such thatXa

=9(Xf) has the
exact desired distribution given by Eq. (1) (Reich and Cotter,
2015, Theorem 5.19). A second-order extension to the ETPF
(which we will call “ETPF2” here) (Acevedo et al., 2017)
modifies the optimal transport Eq. (8) as follows:

Xa
= Xf (T∗+D

)
, (10)

where the additional term D is a matrix that ensures that the
empirical covariance estimate 6Xa from Eq. (5) is preserved
by Eq. (6).

2.1 Localization

In high-dimensional geophysical problems, spatial error cor-
relations decrease with increasing spatial distance between
states. Due to the undersampled nature of the ensemble, these
correlations may not be accurately approximated. Localiza-
tion allows us to strictly enforce the shrinking of correlations
between distant states. For localization in the ETPF, we fol-
low the R-localization formulation given in Reich and Cotter
(2015) and Acevedo et al. (2017). Figure 2 provides an illus-
tration of R localization, with the full procedure described
below.

Figure 2. A visual representation of R localization in the ETPF.
Panel (a) represents the localization radius around the ith state vari-
able represented by the black dot, with the observations represented
by the open red dots. Panel (b) represents the decorrelation of R−1

along the diagonal.

Typically, the observation error distribution is assumed to
be unbiased and Gaussian, with the probability density used
to compute the weights in Eq. (4) for particular realizations
of the observation Y, of the state X, and of the prior informa-
tion P, defined as

π(Y|X,P)=
1

√
|2πR|

e−
1
2 (Y−H(X))

T R−1(Y−H(X)), (11)

where H is the observation operator. In this case it can be
fully parameterized by the observation error covariance R ∈
Rm×m, where m is the number of observations.

We assume that the observations are uncorrelated, making
R= diagjRj,j a diagonal matrix. For the `th state variable
x(`), we define the localized observation error covariance ma-
trix R` via

R−1
` = diagj=1,...,m {ρ (d(`,j)/r)} ◦R−1, (12)

where d is some distance function defined between the `th
state space variable and the j th observation space variable,
r is the localization radius, ρ is a decorrelation function,
and ◦ stands for the Hadamard element-wise product. In this
work we use the Gaspari–Cohn decorrelation function (Gas-
pari and Cohn, 1999). The localized inverse of the observa-
tion error covariance (12) is then used in the generation of
the weight ensemble wa

`, similarly to Eq. (4).
A different transform matrix is computed for each state

variable. Specifically, consider the ensembles of the `th state
space variable:

xf,(`)
=

[
x

f,(`)
1 , . . ., x

f,(`)
N f

]
,

xa,(`)
=

[
x

a,(`)
1 , . . ., x

a,(`)
Na

]
. (13)

The Monge problem formulation in Eq. (9) is replaced with
the localized formulation for the `th variable,

T∗` = argmin
T

∑
1≤j≤N f

1≤k≤Na

Tj,k
∥∥∥xf,(`)
j − x

f,(`)
k

∥∥∥2

2

subject to T1Na =Nawa
`, TT 1N f = 1Na ,

Ti,j ≥ 0, (14)
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with the analysis ensemble of the `th state space variable
given by

xa,(`)
= xf,(`)T∗` . (15)

3 Particle rejuvenation in the ETPF

Particle and ensemble-based filters often underrepresent un-
certainty (Asch et al., 2016) due to the relatively small num-
ber of samples when compared to the dimension of the state
and data spaces. Over several data assimilation cycles mul-
tiple particles start carrying either unimportant or redundant
information, which leads to weight collapse or to ensemble
degeneracy (Strogatz, 2018). To alleviate these effects, meth-
ods such as inflation (Anderson, 2001; Popov and Sandu,
2020), rejuvenation (Reich, 2013), and resampling (Reich
and Cotter, 2015; Attia and Sandu, 2015) have been devel-
oped.

In order to avoid ensemble collapse, the ETPF employs a
particle rejuvenation approach (Acevedo et al., 2017; Reich,
2013; Chustagulprom et al., 2016) that perturbs the analysis
ensemble by a random sampling from the ensemble of prior
anomalies,

Xa
← Xa

+

√
τ

N − 1
Afη

(
IN −N−11N1TN

)
, (16)

where η ∼ (N (0,1))N×N is a matrix of i.i.d. samples from
the standard normal distribution of size N , the rejuvenation
factor τ (also called the bandwidth parameter) is a hyperpa-
rameter that controls the magnitude of the correction, and the
ensemble anomalies,

Af
= Xf

(
IN −N−11N1TN

)
, (17)

are defined as the ensemble of deviations from the
sample mean. Of note is the fact that the extra term(
IN −N−11N1TN

)
in Eq. (16) ensures that the introduction

of the random matrix η does not modify the mean of Xa.
This is due to the fact that(

IN −N−11N1TN
)

1N = 0N ,

1TN
(

IN −N−11N1TN
)
= 0TN . (18)

Note that defining the matrix

B :=
√

τ

N − 1

(
IN −N−11N1TN

)
η
(

IN −N−11N1TN
)

(19)

allows us to write the ETPF with standard rejuvenation (16)
as follows:

Xa
=XfT∗+

√
τ

N − 1
Afη

(
IN −N−11N1TN

)
=XfT∗+

√
τ

N − 1
Xf
(

IN −N−11N1TN
)

η
(

IN −N−11N1TN
)

=Xf
[

T∗+
√

τ

N − 1

(
IN −N−11N1TN

)
η
(

IN −N−11N1TN
)]

=Xf T̃ with T̃ := T∗+B. (20)

The matrix B acts as a stochastic perturbation of the opti-
mal transport operator T∗. The choice of B preserves the lin-
ear constraints of the Monge–Kantorovich problem, Eq. (9),
since 1TNB= 0TN and B1N = 0N due to the property (18).
This, of course, immediately calls into question the optimal-
ity of the transport for a finite ensemble, as adding this type
of B matrix perturbs the transport mapping T̃ away from the
optimum T∗.

4 Particle rejuvenation through stochastic shrinkage

In the context of ensemble methods, covariance shrinkage
(Nino-Ruiz and Sandu, 2019, 2015; Nino-Ruiz et al., 2014)
is used, similar to other canonical covariance tapering tech-
niques such as inflation (Anderson, 2001; Popov and Sandu,
2020) and localization (Anderson, 2012; Hunt et al., 2007;
Nino-Ruiz and Sandu, 2016; Nino-Ruiz et al., 2015; Petrie,
2008; Zhang et al., 2010), to enrich the information repre-
sented by an undersampled covariance matrix.

From a Bayesian perspective, covariance shrinkage seeks
to incorporate additional prior information on error correla-
tions into the analysis, in order to enhance the inference. In
many data assimilation models, climatological covariance in-
formation is often available; i.e., it is known prior informa-
tion. Climatological covariances are typically precomputed
or derived from climatological models and are often em-
ployed in variational data assimilation (Lorenc et al., 2015).

Following Popov et al. (2020), we describe the stochas-
tic covariance shrinkage technique. Instead of perturbing the
transform matrix as in Eq. (20), we consider enhancing the
dynamic ensemble Xf

∈ Rn×N , where N :=N f with an M-
member synthetic ensemble X f

∈ Rn×M of samples indepen-
dent of the dynamical ensemble, where Na

=N +M . Each
synthetic ensemble member is a biased sample distributed as

Xf
:,i ∼ π(X

f
| P), (21)

which is the full distribution of the forecast conditioned by
the prior information that we have provided to the algo-
rithm. Note that Eq. (21) is not the empirical measure dis-
tribution (2), which only has information from the ensemble
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Figure 3. A representation of the mixing of the dynamical ensem-
ble Xf with the synthetic ensemble X f. The dynamical ensemble
comes from the propagation of a dynamical system (here the Lorenz
’63 system in panel a), while the synthetic ensemble comes from
a climatological distribution (here represented by the bell curve in
panel b).

members, but rather the “enhanced” distribution that is as-
sumed to contain all the information from the forecast and
the prior climatological information P . An illustration of this
ensemble combination is shown in Fig. 3.

Augmenting the dynamical ensembles with the synthetic
ensembles leads to the total N +M-member ensemble:

Xf
=
[

Xf X f ] ∈ Rn×(N+M), (22)

with weights wf
= [wf

1, . . .w
f
N+M ] with respect to πP |Xf .

Taking Af to be the anomalies of the dynamic ensem-
ble (17) and

Af
= X f

(
IM −M−11M1TM

)
(23)

to be the anomalies of the synthetic ensemble, the empirical
covariance of the total ensemble can be written as

6Xf =6Xf +6X f , (24)

where the constituent empirical (unbiased) covariances are
defined in terms of the weights

6Xf =

N∑
i=1

wf
i

N

N − 1
Af
:,iA

f,T
:,i ,

6X f =

M∑
i=1

wf
N+i

M

M − 1
Af
:,iA

f,T
:,i . (25)

In the covariance shrinkage approach, to ensure that the
sample mean of the augmented ensemble is the same as that
of the dynamic ensemble, the synthetic ensemble is con-
structed with a mean equal to the sample mean of the dy-
namic ensemble:

M−1 X f1M =N−1 Xf1N . (26)

Thus, constructing the synthetic ensemble only requires us
to sample the synthetic anomalies. Consider a climatological
covariance matrix P . The synthetic anomalies are sampled

from some unbiased distribution with covariance µP , where
µ is a scaling factor defined later. In the Gaussian case,

Af
:,i ∼N (0n,µP). (27)

An alternate choice of distribution that we explore is the sym-
metric Laplacian distribution (Kozubowski et al., 2013),

Af
:,i ∼ L(0n,µP), (28)

which is described by the probability density function

π(x)=
2

[(2π)nµP]
1
2

(
xTP−1x

2µ

) 2−n
4

K 2−n
2

√2xTP−1x

µ

 , (29)

where K is the modified Bessel function of the second kind
(Olver et al., 2010). The choice of Laplacian distribution is
motivated by robust statistics techniques (Rao et al., 2017).
The resulting sampled covariance would therefore be an es-
timate of the scaled climatological covariance:

6X f ≈ µP. (30)

Remark 1. In order to stay consistent with the mean esti-
mate, the sampled anomalies are replaced with their mean
zero counterparts:

Af
←Af

(
IM −M−11M1TM

)
. (31)

The weights wf are divided into two classes: those that
are associated with the dynamic ensemble and those that are
associated with the synthetic ensemble,

wf
i =

{
1− γ 1≤ i ≤N,
γ N + 1≤ i ≤N +M, (32)

where the parameter γ is known as the covariance shrink-
age factor. One choice to calculate γ is the Rao–Blackwell–
Ledoit–Wolf (RBLW) estimator (Chen et al., 2009; Nino-
Ruiz and Sandu, 2016, Eq. 9)

γRBLW =min
([

N − 2
N(N + 2)

+
(n+ 1)N − 2

Û (P,6Xf)N(N + 2)(n− 1)

]
,1

)
, (33)

where the sphericity factor,

Û (P,6Xf) :=
1

n− 1

(
ntr(C2)

tr2(C)
− 1

)
,

with C := P−
1
26XfP−

1
2 , (34)
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represents the mismatch between the climatological covari-
ance (called the “target” in the statistical literature) and
sample covariance matrices. Note that, if 6Xf → P , then
Û (P,6Xf)→ 0 and, from Eq. (33), γRBLW→ 1. This rep-
resents a particular degenerate case whereby the dynamical
ensemble is deemed to not be needed and the climatological
distribution is deemed to perfectly represent the forecast.

In this framework (Chen et al., 2009), the scaling parame-
ter for the climatological covariance is defined as

µ=
tr(C)
n
. (35)

Remark 2. The RBLW estimator (33) makes the assumption
that the underlying distribution of the dynamic ensemble is
Gaussian. Typically this assumption is violated for dynami-
cal systems of interest.
Remark 3. In the statistical literature, the target covariance
is often taken to be the identity, P = I, which implies that
C =6Xf in Eq. (34). The assumption that the target is a cli-
matological covariance is natural generalization in the spe-
cific context of sequential data assimilation.
Remark 4. The scaling of the target matrix P is not of any
consequence. Let P̃ = βP be a scalar scaling of the tar-
get matrix: then C̃i = 1

β
Ci , implying that µ̃i = 1

β
µi , render-

ing the matrix scaling inconsequential for computing µ. For
γRBLW, observe that the trace is a linear operation, and thus
the scaling of C plays no role in computing Û .

Using the prior weight ensemble determined by Eq. (32),
the importance sampling weights of the total ensemble Xf

can be computed using Eq. (4), begetting the weight ensem-
ble wa. By leveraging this, the resulting analysis ensemble
based on prior states and importance sampling weights of
N +M states is transported into an equally weighted poste-
rior ensemble of N states through the transformation

Xa
= Xf T∗, (36)

where the optimal transport matrix T∗ ∈ R(N+M)×N is com-
puted by solving Eq. (9).

Recall that in the traditional method of rejuvenation (20),
the optimal transport matrix is perturbed randomly into a
nearby transport matrix; no new prior information is intro-
duced. We take a fundamentally different approach by in-
corporating “unseen” prior information derived from a cli-
matological covariance. To this end, before the Monge–
Kantorovich problem (9) is solved, we augment the empirical
measure distribution (2) with samples from the climatologi-
cal distribution to accommodate the total ensemble (22),

π(X | P)=

N f∑
j=1

wf
j δX−Xf

j
, (37)

with X̂f being the random variable corresponding to
this measure, estimating the distribution (21), and the
weights (32) coming from the RBLW shrinkage factor (33).

In effect we attempt to avoid ensemble collapse by enhancing
the empirical measure distribution (37) with new prior infor-
mation, as opposed to a reweighing of the old prior informa-
tion. We denote our method as “FETPF”, standing for “fore-
sight” ETPF, as we believe including prior information in the
analysis procedure is a type of foresight. When this proce-
dure is combined with localization as described in Sect. 2.1,
we arrive at the localized FETPF, or LFETPF, algorithm.

4.1 Convergence of the FETPF

In this section we show that the FETPF reduces to (general-
ized) variants of the ETPF in two different ways: in the syn-
thetic ensemble limit and in the synthetic distribution limit.

Assume that the synthetic sample distribution is inexact
in the mean and covariance, violating the assumption made
in Eq. (21). As the dynamical ensemble size N increases,
the shrinkage factor γRBLW in Eq. (33) approaches 0. This
means that in the limit of an infinite dynamical ensemble, the
FETPF reduces to the ETPF.

Assume by contrast that the synthetic sample distribution
is exact, meaning that the climatology produces samples in-
distinguishable from the forecast and that the assumption in
Eq. (21) is fully satisfied. For a finite dynamical ensemble,
the shrinkage factor γRBLW in Eq. (33) approaches 1, and the
synthetic ensemble is taken as the forecast. This reduces to
the ETPF in the case when the dynamical ensemble size is
equal to the synthetic ensemble size N =M and should re-
sult in an equivalent formulation when M >N .

This leaves a gap, however, as the shrinkage factor γRBLW
only accounts for the covariance; thus, if the synthetic en-
semble distribution effectively predicts the covariance but
does not predict the higher-order moments well, then the
synthetic ensemble will still violate Eq. (21) even when it
is treated as the forecast. Thus, an ideal shrinkage factor su-
perior to Eq. (33) that takes into account more than just the
covariance is required, though this is significantly outside the
scope of this work.
Remark 5. Most ensemble-based methods, including the
ETPF, can produce physically unrealistic analysis ensemble
members because of the linear nature of the optimal transport
matrix. As the ETPF and FETPF perform inference that con-
verges in distribution to the exact analysis distribution, as the
dynamical ensemble size N grows, the algorithms produce
physically realistic realizations with probability 1.

4.2 Multiple climatological covariance matrices

It is conceivable that multiple climatological models give rise
to multiple climatological covariances, or alternatively multi-
ple candidates for the most “common” behavior of the model
are to be chosen.

Given a collection of target covariances, {Pj }j∈J , we
must choose the appropriate covariance from which to sam-
ple. We consider the sphericity of the mismatch between the
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target and forecast covariances: Eq. (34). Based on the au-
thors’ numerical experience, we select the target covariance
that corresponds to the highest sphericity of the mismatch:

P∗ = argmax
Pj

Û
(
Pj ,6Xf

)
, (38)

We can justify this choice by realizing that the smaller the
sphericity, the closer our samples are to that of canonical re-
juvenation techniques. The aim of climatological shrinkage
is to introduce unknown information into our inference pro-
cedure, and thus the target covariance with the highest mis-
match introduces the highest amount of outside information.
Remark 6. It is also possible to construct “multi-target”
shrinkage estimators (Lancewicki and Aladjem, 2014) that
consider all target matrices simultaneously.

5 Numerical experiments

We start with a short introduction to test problem configura-
tions and the numerical experiment setups.

In order to stay in line with other particle rejuvenation
techniques, anomaly inflation is used as a heuristic to try and
overcome deficiencies in the descriptive power of the syn-
thetic ensemble. Formally,

Af
← αAf, (39)

which is equivalent to assuming an inflated scaling factor µ
in Eq. (35). We therefore have two parameters that can be
configured in the rejuvenation technique: M , the size of our
synthetic ensemble, and α, the inflation applied to its real-
izations. It is important that inflation only be applied to the
synthetic ensemble and not the dynamical ensemble, so as
not to violate the physical constraints of the dynamics.

In our experiments we report the error of the analysis mean
with respect to the truth (reference), measured by the spa-
tiotemporal root mean square error (RMSE):

RMSE
(
xt, xa)

=

√√√√ 1
nT

T∑
i=1

∥∥xt
i − x

a
i

∥∥2
2, (40)

where T stands for the relevant measured timeframe of the
experiments.

We now describe the 3-variable Lorenz ’63 model and the
40-variable Lorenz ’96 model that are used in the experi-
ments. We use the implementation of both these problems
from the ODE test problem suite (Computational Science
Laboratory, 2020; Roberts et al., 2019).

5.1 Lorenz ’63 model

For the first set of numerical experiments, we use the Lorenz
’63 system (Lorenz, 1963):

x′ = σ(y− x),

y′ = x(ρ− z)− y,

z′ = xy−βz, (41)

with chaotic canonical parameter values σ = 10, ρ = 28, and
β = 8/3. We observe the first component, with Gaussian un-
biased observation error, with a very large variance of R= 8.

We perform 10 000 assimilation steps but discard the first
1000 that are used for spinup. The time interval between suc-
cessive observations is 1t = 0.12. We perform 20 indepen-
dent runs and take the mean of the results to obtain an ac-
curate estimate of the expected error. All reported results are
for statistically significant differences.

This problem setup is challenging for the ensemble
Kalman filter, which does not converge even for larger en-
semble sizes. Therefore, this is a relevant test for non-
Gaussian algorithms.

5.2 Lorenz ’63 FETPF analysis results

As discussed previously, the canonical choice for the shrink-
age covariance is the identity matrix. It has been the au-
thors’ experience that for most dynamical systems this choice
is poor. Moreover, the sequential data assimilation problem
typically provides ways to calculate climatological approxi-
mations to the covariance. We take advantage of such tech-
niques in this paper.

The first type of climatological covariance that we investi-
gate is that of the distribution over the whole manifold of the
dynamics. The trace-state-normalized

P←
n

tr(P)
P (42)

matrix that is obtained by taking the temporal covariance of
50 000 sample points on the attractor of the canonical Lorenz
’63 model is

P =

 0.8616 0.8618 −0.0148
0.8618 1.1149 −0.0035
−0.0148 −0.0035 1.0234

 , (43)

with condition number 15.88.
Our first round of experiments compares the canonical

method of rejuvenation in the ETPF and the ETPF2 with a re-
juvenation factor of τ = 0.04 in Eq. (19) (see Acevedo et al.,
2017) to the stochastic covariance shrinkage technique for
both Gaussian and Laplacian samples. A dynamic ensemble
sizeM = 100, the inflation factors α ∈ {1.0,1.2}, and the tar-
get covariance (43) are used. The baseline error is computed
using a sequential importance resampling (SIR) filter with an
ensemble of N = 105 particles.
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Figure 4. For the Lorenz ’63 model, analysis RMSE versus dy-
namic ensemble size (N ) of the Gaussian (G) and Laplacian (L)
covariance shrinkage approaches (FETPF) to particle rejuvenation
for a synthetic ensemble size of M = 100 and for various values
of synthetic anomaly inflation, α, from Eq. (39), with respect to a
canonical particle rejuvenation approach for the first-order ETPF
and the second-order ETPF (denoted ETPF2) for an optimal rejuve-
nation factor τ = 0.04. The target covariance is taken to be Eq. (43).
The baseline error is denoted by the “true” SIR filter.

The results for the first round of experiments are shown in
Fig. 4. From the results, all possible ETPF-based algorithms
seem to converge to the SIR baseline for around N = 100
particles. The differences between the various algorithms
only become apparent at smaller ensemble sizes. As reported
in Acevedo et al. (2017), the second-order accurate ETPF2
performs better than the standard ETPF.

The FETPF without synthetic inflation performs worse
than both the ETPF and the ETPF2 for Gaussian synthetic
samples, while it performs better when equipped with Lapla-
cian synthetic samples. When the synthetic samples are in-
flated with inflation factor α = 1.2, the FETPF performs sig-
nificantly better than all other algorithms.

The second round of experiments uses multiple values of
the climatological covariance P . The rest of the setup is
identical to the previous experiment. To test multiple covari-
ances, we run an ETPF with N = 100 with 20 000 evenly
spaced state snapshots over a time interval of 2400 time
units and calculate the trace-state-normalized forecast co-
variances. Under a square Frobenius norm distance, we clus-
ter the empirical covariance matrices of the same ensemble
at different times using the k-means algorithm (Tan et al.,
2018) into two clusters. The collection of climatological co-
variances for Lorenz ’63 thus consists of the centroids of
each cluster,

Figure 5. For the Lorenz ’63 model, analysis RMSE versus dy-
namic ensemble size (N ) of the Gaussian (G) and Laplacian (L)
covariance shrinkage approaches (FETPF) to particle rejuvenation
with the multi-target covariances (44) for a synthetic ensemble size
of M = 100 and for various values of synthetic anomaly inflation
(α) with respect to a canonical particle rejuvenation approach for
the first-order ETPF and the second-order ETPF (denoted ETPF2)
for the rejuvenation factor τ = 0.04. The baseline error is denoted
by the “true” SIR filter.

P1 =

 0.5017 0.5524 −0.4587
0.5524 1.0731 −0.6723
−0.4587 −0.6723 1.4252

 ,
P2 =

 0.5443 0.6830 0.4330
0.6830 1.2748 0.6318
0.4330 0.6318 1.1808

 , (44)

with condition numbers 13.68 and 16.98, respectively. As
can be seen, the clusters are mainly split by the correlation
factors of z with respect to the other variables being positive
or negative.

The second round of experiments is reported in Fig. 5 us-
ing the climatological covariances (44). The analysis of the
results is largely similar to the previous experiment, with the
only difference being that the FETPF with multiple covari-
ances does not seem to require synthetic inflation. As the co-
variance chosen depends on the dynamical ensemble, these
results indicate that a temporally varying climatological dis-
tribution might induce an even greater decrease in error.

The results empirically show that supplementing the en-
semble with additional synthetic information during assimi-
lation is more effective than randomly perturbing the ensem-
ble post-assimilation, for a small problem. The authors hy-
pothesize that the results point strongly towards the need to
intelligently and adaptively choose the target covariance ma-
trices and to the need for better operational calculation of the
covariance shrinkage factor γ .
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Figure 6. For the Lorenz ’63 model, analysis RMSE of the covari-
ance shrinkage approach to particle rejuvenation (FETPF) for dif-
ferent values of the synthetic ensemble size M and synthetic infla-
tion factor α and for a dynamical ensemble size of N = 5.

5.3 Lorenz ’63 parameter search

Our third round of experiments with the Lorenz ’63 system
seeks to understand the effect of selecting the two free pa-
rameters, i.e., the synthetic ensemble size M and the syn-
thetic ensemble inflation factor α. We keep the dynamic en-
semble size to a small constant size of N = 5 and vary M in
the range [0,200], with α varying in the range [1,1.2].

Figure 6 shows the spatiotemporal RMSE for various val-
ues of M and α, with Gaussian synthetic samples using the
single target matrix (43). The results are not surprising. An
increase in the synthetic ensemble size M corresponds to a
decrease in error. Similarly, an increase in the inflation fac-
tor also corresponds to a decrease in error. Furthermore, the
factors are complementary, meaning that increasing both de-
creases the error even more significantly.

An interesting effect is that very large synthetic ensemble
sizes are required to correspond to a noticeable decrease in
error relative to the dimension of the system. This might pose
a challenge when this algorithm is utilized without further
corrections such as localization.

5.4 Lorenz ’63 γRBLW histograms

Our fourth experiment with the Lorenz ’63 equations looks
at the distribution of the values of the shrinkage parameter
γRBLW from Eq. (33) that is obtained through the assimilation
procedure. We test with the Gaussian (Eq. 27) and Laplacian
(Eq. 28) on the climatological distribution with no synthetic
inflation (39) (α = 1).

Figure 7 shows an approximation to the distributions of
γRBLW for several choices of the dynamical ensemble size N
with all other settings kept the same as in the previous exper-
iments. As shown in Sect. 4.1, the shrinkage factor γRBLW
tends towards a distribution that starts resembling a degen-
erate distribution around zero as N increases. For Gaussian

samples, this happens in a smooth fashion, but for Laplacian
samples something interesting occurs. For N = 5, the distri-
bution of γRBLW is significantly much more skewed towards
smaller values, meaning that less confidence is placed in the
synthetic ensemble. While the authors do not see a convinc-
ing explanation for this behavior, the effect does explain why
the Laplacian distributed synthetic samples were an improve-
ment over Gaussian samples in Sect. 5.2.

5.5 Lorenz ’96 model

For numerical experiments with localization, we use the
Lorenz ’96 system (Lorenz, 1996; van Kekem, 2018):

x′i =−xi−1 (xi−2− xi+1)− xi +F,

i = 1, . . .,40, F = 8. (45)

with x0 = x40, x−1 = x39, and x41 = x1. The Lorenz ’96 sys-
tem provides a more challenging medium-dimensional as-
similation scenario. We perform 1000 assimilation steps but
discard the first 100 that are used for spinup. The time inter-
val between successive observations is 1t = 0.05. We per-
form four independent runs and take the mean of the results
to obtain an accurate estimate of the expected error.

We test with two observation operators. First, we consider
a standard linear observation operator

H(x)= x (46)

that observes all states with an observation covariance of R=
I40. Second, we use the nonlinear observation operator (Asch
et al., 2016),

H(x)=
x
2
◦

[
1+

(
|x|
10

)◦(ω−1)
]
, (47)

where ◦ stands for element-wise operations (multiplication
and exponentiation), and |·| stands for element-wise absolute
values that observe all states in a nonlinear fashion with the
observation covariance R= I40. We set the control parameter
to ω = 5 for a moderately nonlinear system.

The matrix P is computed in a similar way to Eq. (43) for
the Lorenz ’63 model and is shown in Fig. 8.

For localization, we take the Gaspari–Cohn (Gaspari and
Cohn, 1999) decorrelation function. As observed in Farchi
and Bocquet (2018), a relatively small localization radius
is needed for the LETPF to converge. We take a radius of
r = 1 variable with the internal parameter of θ = 3

√
2π

7−4log(2) ≈

1.77884 to more closely match the standard Gaussian local-
ization function (see Petrie, 2008, for more details on the in-
ternal parameter). This effectively means that three variables
of either size are taken into consideration for every state vari-
able.

5.6 Lorenz ’96 localization results

For the Lorenz ’96 experiments we aim to compare LFETPF
to the LETPF and to the localized ensemble transform
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Figure 7. The distribution of the γRBLW parameter for the Lorenz ’63 model. Both Gaussian (Eq. 27) and Laplacian (Eq. 28) assumptions
are used for the synthetic ensemble, with no synthetic inflation (α = 1).

Figure 8. Trace-normalized climatological P covariance matrix
used for the Lorenz ’96 model.

Kalman filter (LETKF). We set the synthetic ensemble size
to a constant M = 100 and the synthetic ensemble infla-
tion factor to α = 1.05. The inflation factor α = 1.05 is also
used in the LETKF. We vary the dynamical ensemble size
in the range N ∈ [2,20] and plot the spatiotemporal analysis
RMSE over the time interval after spinup. For the LETPF,
a constant high rejuvenation value of τ = 0.2 is utilized in
order to ensure convergence.

For the linear observation operator (46), the results of this
experiment can be seen in Fig. 9. The proposed LFETPF did
converge, for a dynamical ensemble size of as little asN = 4,
as compared to the LETPF, which required a minimum en-
semble size of N = 14, in line with the number of positive
Lyapunov modes of the system. The proposed LFETPF per-
formed slightly worse than the LETPF, which we suspect
would be rectified by a larger choice of M . Both the parti-
cle filters performed worse than the state-of-the-art LETKF.

For the nonlinear observation operator (47), the results are
plotted in Fig. 10. Similarly to the linear observation opera-

Figure 9. For the Lorenz ’96 model with the linear observation op-
erator (46): analysis RMSE versus dynamic ensemble size (N ) of
the LETPF with rejuvenation factor τ = 0.2 versus the Gaussian
(G) localized covariance shrinkage approach (LFETPF) to particle
rejuvenation for a synthetic ensemble size of M = 100 and for syn-
thetic anomaly inflation, α = 1.05, versus the LETKF (Hunt et al.,
2007) method with inflation α = 1.05.

tor, both the LETKF and LFETPF require very few ensem-
ble members to converge, with the LETPF again requiring
around N = 14 ensemble members. The LETKF still beats
both particle filters even in this non-Gaussian setting. These
results show that the R-localization approach used for the
ETPF is likely breaking many of the nice non-Gaussian fea-
tures of the algorithm, as the algorithm should theoretically
perform significantly better than a Kalman-filtering-based
approach in this setting.

Nonlin. Processes Geophys., 29, 241–253, 2022 https://doi.org/10.5194/npg-29-241-2022



A. A. Popov et al.: Foresight ETPF 251

Figure 10. For the Lorenz ’96 model with the nonlinear observation
operator (47): analysis RMSE versus dynamic ensemble size (N ) of
the LETPF with rejuvenation factor τ = 0.2 versus the Gaussian (G)
localized covariance shrinkage approach (LFETPF) to particle reju-
venation for a synthetic ensemble size ofM = 100 and for synthetic
anomaly inflation, α = 1.05, versus the LETKF (Hunt et al., 2007)
method with inflation α = 1.05.

6 Conclusions

This paper introduces a stochastic covariance shrinkage-
based particle rejuvenation technique for the ensemble trans-
port particle filter. Instead of incorporating synthetic noise
as an attempt to regularize the distribution of the ensemble,
we attempt to incorporate an ensemble derived from some
known prior information. This is done through the use of
synthetic anomalies. These synthetic anomalies are sampled
from any chosen distribution family, such that they are con-
sistent with the climatological covariance information. We
provide a philosophical justification for why we believe our
approach is more in line with the assumptions underlying
Bayesian inference.

Numerical experiments with the simple three-variable
Lorenz system show that the use of climatological prior in-
formation to perform rejuvenation leads to reduced analysis
errors than the typical rejuvenation approach. Additionally,
the FETPF methodology seems to be much more stable for
smaller dynamical ensemble sizes than the original rejuve-
nation approach. This leads us to believe that the stochas-
tic shrinkage approach augments the original ensemble in a
meaningful way.

Numerical experiments with localization techniques show
that the LFETPF is comparable in performance to the
LETPF; however, a large synthetic ensemble size is likely
needed. Future work combining the LFETPF and the
LFETKF (Popov et al., 2020) in a hybrid filtering approach
(Acevedo et al., 2017) might provide a happy medium be-
tween the LFETPF and the LFETKF.

One limitation of this work is the focus on synthetic Gaus-
sian samples. Methods such as generative adversarial net-
works (Aggarwal, 2018) (known as GANs) could be utilized
to give more complex synthetic samples that mimic “true”
samples in meaningful ways. Another related limitation is
our focus solely on the RBLW (Chen et al., 2009) shrinkage
factor. While it has been the authors’ experience that other
factors do not perform as well in this setting, further research
into building factors specifically tailored for ensemble-based
data assimilation methods is warranted.

By far the largest limitation of this work is common to
research on particle filters: the large-dimensional setting.
While localization methods have begun the foray of particle
filters into the medium-dimensional setting, alternatives to R
localization in the ETPF coupled with stochastic shrinkage
may provide an avenue to a higher-dimensional setting.

It is the authors’ belief that future research into all the lim-
itations that have been identified might significantly improve
the performance of the FETPF and create a method that can
be applied to operational problems.

Code availability. The version of ODE test problems used to
generate all the experiments in this work is available at the per-
sistent link https://github.com/ComputationalScienceLaboratory/
ODE-Test-Problems/releases/tag/v0.0.1 (Computational Science
Laboratory, 2020; https://doi.org/10.5281/zenodo.6676706,
Roberts et al., 2022). The data assimilation code in-
cluding the ETPF, ETPF2, LETPF, FETPF, and LFETP
used in this work can be found at the persistent link
https://github.com/ComputationalScienceLaboratory/DATools/
releases/tag/2022-06-10 (Computational Science Laboratory,
2022; https://doi.org/10.5281/zenodo.6676745, Popov et al., 2022).
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