Articles | Volume 28, issue 4
https://doi.org/10.5194/npg-28-565-2021
https://doi.org/10.5194/npg-28-565-2021
Research article
 | 
15 Oct 2021
Research article |  | 15 Oct 2021

Multivariate localization functions for strongly coupled data assimilation in the bivariate Lorenz 96 system

Zofia Stanley, Ian Grooms, and William Kleiber

Related authors

A statistical approach to fast nowcasting of lightning potential fields
Joshua North, Zofia Stanley, William Kleiber, Wiebke Deierling, Eric Gilleland, and Matthias Steiner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 79–90, https://doi.org/10.5194/ascmo-6-79-2020,https://doi.org/10.5194/ascmo-6-79-2020, 2020
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Review article: Towards strongly coupled ensemble data assimilation with additional improvements from machine learning
Eugenia Kalnay, Travis Sluka, Takuma Yoshida, Cheng Da, and Safa Mote
Nonlin. Processes Geophys., 30, 217–236, https://doi.org/10.5194/npg-30-217-2023,https://doi.org/10.5194/npg-30-217-2023, 2023
Short summary
Toward a multivariate formulation of the parametric Kalman filter assimilation: application to a simplified chemical transport model
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023,https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
Data-driven reconstruction of partially observed dynamical systems
Pierre Tandeo, Pierre Ailliot, and Florian Sévellec
Nonlin. Processes Geophys., 30, 129–137, https://doi.org/10.5194/npg-30-129-2023,https://doi.org/10.5194/npg-30-129-2023, 2023
Short summary
Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset
Elia Gorokhovsky and Jeffrey L. Anderson
Nonlin. Processes Geophys., 30, 37–47, https://doi.org/10.5194/npg-30-37-2023,https://doi.org/10.5194/npg-30-37-2023, 2023
Short summary
Using orthogonal vectors to improve the ensemble space of the EnKF and its effect on data assimilation and forecasting
Yung-Yun Cheng, Shu-Chih Yang, Zhe-Hui Lin, and Yung-An Lee
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2022-19,https://doi.org/10.5194/npg-2022-19, 2023
Revised manuscript accepted for NPG
Short summary

Cited articles

Anderson, J. L.: Localization and sampling error correction in ensemble Kalman filter data assimilation, Mon. Weather Rev., 140, 2359–2371, 2012. a
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances, Q. J. Roy. Meteor. Soc., 134, 1951–1970, https://doi.org/10.1002/qj.339, 2008. a
Bishop, C. H. and Hodyss, D.: Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation, Q. J. Roy. Meteor. Soc., 133, 2029–2044, 2007. a
Bolin, D. and Wallin, J.: Spatially adaptive covariance tapering, Spat. Stat., 18, 163–178, https://doi.org/10.1016/j.spasta.2016.03.003, 2016. a, b, c, d
Buehner, M. and Shlyaeva, A.: Scale-dependent background-error covariance localisation, Tellus A, 67, 28027, https://doi.org/10.3402/tellusa.v67.28027, 2015. a
Download
Short summary
In weather forecasting, observations are incorporated into a model of the atmosphere through a process called data assimilation. Sometimes observations in one location may impact the weather forecast in another faraway location in undesirable ways. The impact of distant observations on the forecast is mitigated through a process called localization. We propose a new method for localization when a model has multiple length scales, as in a model spanning both the ocean and the atmosphere.