Articles | Volume 28, issue 4
https://doi.org/10.5194/npg-28-565-2021
https://doi.org/10.5194/npg-28-565-2021
Research article
 | 
15 Oct 2021
Research article |  | 15 Oct 2021

Multivariate localization functions for strongly coupled data assimilation in the bivariate Lorenz 96 system

Zofia Stanley, Ian Grooms, and William Kleiber

Related authors

Simulated and Observed Transport Estimates Across the Overturning in the Subpolar North Atlantic Program (OSNAP) Section
Gokhan Danabasoglu, Frederic S. Castruccio, Burcu Boza, Alice M. Barthel, Arne Biastoch, Adam Blaker, Alexandra Bozec, Diego Bruciaferri, Frank O. Bryan, Eric P. Chassignet, Yao Fu, Ian Grooms, Catherine Guiavarc'h, Hakase Hayashida, Andrew McC. Hogg, Ryan M. Holmes, Doroteaciro Iovino, Andrew E. Kiss, M. Susan Lozier, Gustavo Marques, Alex Megann, Franziska U. Schwarzkopf, Dave Storkey, Luke van Roekel, Jon Wolfe, Xiaobiao Xu, and Rong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5406,https://doi.org/10.5194/egusphere-2025-5406, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023,https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022,https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary

Cited articles

Anderson, J. L.: Localization and sampling error correction in ensemble Kalman filter data assimilation, Mon. Weather Rev., 140, 2359–2371, 2012. a
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances, Q. J. Roy. Meteor. Soc., 134, 1951–1970, https://doi.org/10.1002/qj.339, 2008. a
Bishop, C. H. and Hodyss, D.: Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation, Q. J. Roy. Meteor. Soc., 133, 2029–2044, 2007. a
Bolin, D. and Wallin, J.: Spatially adaptive covariance tapering, Spat. Stat., 18, 163–178, https://doi.org/10.1016/j.spasta.2016.03.003, 2016. a, b, c, d
Buehner, M. and Shlyaeva, A.: Scale-dependent background-error covariance localisation, Tellus A, 67, 28027, https://doi.org/10.3402/tellusa.v67.28027, 2015. a
Download
Short summary
In weather forecasting, observations are incorporated into a model of the atmosphere through a process called data assimilation. Sometimes observations in one location may impact the weather forecast in another faraway location in undesirable ways. The impact of distant observations on the forecast is mitigated through a process called localization. We propose a new method for localization when a model has multiple length scales, as in a model spanning both the ocean and the atmosphere.
Share