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Abstract. Localization is widely used in data assimila-
tion schemes to mitigate the impact of sampling errors
on ensemble-derived background error covariance matri-
ces. Strongly coupled data assimilation allows observations
in one component of a coupled model to directly impact
another component through the inclusion of cross-domain
terms in the background error covariance matrix. When dif-
ferent components have disparate dominant spatial scales, lo-
calization between model domains must properly account for
the multiple length scales at play. In this work, we develop
two new multivariate localization functions, one of which is
a multivariate extension of the fifth-order piecewise rational
Gaspari–Cohn localization function; the within-component
localization functions are standard Gaspari–Cohn with dif-
ferent localization radii, while the cross-localization func-
tion is newly constructed. The functions produce positive
semidefinite localization matrices which are suitable for
use in both Kalman filters and variational data assimilation
schemes. We compare the performance of our two new mul-
tivariate localization functions to two other multivariate lo-
calization functions and to the univariate and weakly coupled
analogs of all four functions in a simple experiment with the
bivariate Lorenz 96 system. In our experiments, the multi-
variate Gaspari–Cohn function leads to better performance
than any of the other multivariate localization functions.

1 Introduction

An essential part of any data assimilation (DA) method is the
estimation of the background error covariance matrix Pb. The
background error covariance statistics stored in Pb provide a
structure function that determines how observed quantities

affect the model state variables, which is of particular impor-
tance when the state space is not fully observed (Bannister,
2008). A poorly designed Pb matrix may lead to an analysis
estimate, after the assimilation of observations, that is worse
than the prior state estimate (Morss and Emanuel, 2002). In
ensemble DA schemes, the Pb matrix is estimated through an
ensemble average. Using an ensemble to estimate Pb allows
the estimates of the background error statistics to change
with the model state, which is desirable in many geophysical
systems (Smith et al., 2017; Frolov et al., 2021). However,
this estimate of Pb will always include noise due to sampling
errors because the ensemble size is finite. In practice, ensem-
ble size is limited by computational resources and, hence,
sampling errors can be substantial. The standard practice to
mitigate the impact of these errors is localization. A number
of different localization methods exist in the DA literature
(e.g., Gaspari and Cohn, 1999; Houtekamer and Mitchell,
2001; Bishop and Hodyss, 2007; Anderson, 2012; Ménétrier
et al., 2015). In this study, we concentrate on distance-based
localization. Distanced-based localization uses physical dis-
tance as a proxy for correlation strength and sets correlations
to zero when the distance between the variables in question is
sufficiently large. Localization is typically incorporated into
the data assimilation in one of two ways – either through
the Pb matrix or through the observation error covariance
R (Greybush et al., 2011). We are focusing on the Schur
(or element-wise) product localization applied directly to the
Pb matrix. The Schur product theorem (Horn and Johnson,
2012, theorem 7.5.3) guarantees that, if the localization ma-
trix is positive semidefinite, then the localized estimate of Pb

is also positive semidefinite. Positive semidefiniteness of es-
timates of Pb is essential for the convergence of variational
schemes and interpretability of schemes, like the Kalman fil-
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ter, which are intended for minimizing the statistical variance
of the estimation error.

The localization functions presented in this work are suit-
able for use in coupled DA, where two or more interacting
large-scale model components are assimilated in one uni-
fied framework. Coupled DA is widely recognized as a bur-
geoning and vital field of study. In Earth system modeling
in particular, coupled DA shows improvements over single-
domain analyses (Sluka et al., 2016; Penny et al., 2019).
However, coupled DA systems face unique challenges as
they involve simultaneous analysis of multiple domains span-
ning different spatiotemporal scales. Cross-domain error cor-
relations in particular are found to be spatially inhomoge-
neous (Smith et al., 2017; Frolov et al., 2021). Schemes that
include cross-domain error correlations in the Pb matrix are
broadly classified as strongly coupled, which is distinguished
from weakly coupled schemes, where Pb does not include
any nonzero cross-domain error correlations. The inclusion
of cross-domain correlations in Pb offers advantages, particu-
larly when one model domain is more densely observed than
another (Smith et al., 2020). Strongly coupled DA requires
careful treatment of cross-domain correlations, with special
attention to the different correlation length scales of the dif-
ferent model components. Previous studies, discussed below,
show that appropriate localization schemes are vital to the
success of strongly coupled DA.

As in single domain DA, there is a broad suite of local-
ization schemes proposed for use in strongly coupled DA.
Lu et al. (2015) artificially deflate cross-domain correlations
with a tunable parameter. Yoshida and Kalnay (2018) use an
offline method, called correlation cutoff, to determine which
observations to assimilate into which model variables and
the associated localization weights. The distance-based mul-
tivariate localization functions developed in Roh et al. (2015)
allow for different localization functions for each compo-
nent and are positive definite but require a single localiza-
tion scale across all components. Other distance-based local-
ization schemes allow for different localization length scales
for each component but are not necessarily positive semidef-
inite (Frolov et al., 2016; Smith et al., 2018; Shen et al.,
2018). Frolov et al. (2016) report that their proposed localiza-
tion matrix is experimentally positive semidefinite for some
length scales. Smith et al. (2018) use a similar method and
find cases in which their localization matrix is not positive
semidefinite.

In this work, we build on these methods and investigate
distance-based, multivariate, positive semidefinite localiza-
tion functions and their use in strongly coupled DA schemes.
We introduce a new multivariate extension of the popular
fifth-order piecewise rational localization function of Gas-
pari and Cohn (1999, hereafter GC). This function is positive
semidefinite for all length scales and, hence, appropriate for
ensemble variational (EnVar) schemes. We compare this to
another newly developed multivariate localization function
that extends Bolin and Wallin (2016) and to two other func-

tions from the literature (Daley et al., 2015). We investigate
the behavior of these functions in a simple bivariate model
proposed by Lorenz (1996). In particular, we look at the im-
pact of variable localization on the cross-domain localization
function. We show that these functions are compatible with
variable localization schemes of Lu et al. (2015) and Yoshida
and Kalnay (2018). We find that, in some setups, artificially
decreasing the magnitude of the cross-domain correlation
hinders the assimilation of observations, while in other se-
tups the best performance comes when there are no cross-
domain updates. We compare all of the multivariate functions
to their univariate and weakly coupled analogs and observe
that the new multivariate extension of GC outperforms all
multivariate competitors.

This paper is organized as follows. In Sect. 2, we present
two new multivariate localization functions and two multi-
variate localization functions from the literature. In Sect. 3
we describe experiments with the bivariate Lorenz 96 model.
We conclude in Sect. 4.

2 Multivariate localization functions

2.1 Multivariate localization background

Consider the background error covariance matrix Pb of a
strongly coupled DA scheme with interacting model com-
ponents X and Y . The Pb matrix may be written in terms of
within-component background error covariances for compo-
nentsX and Y (Pb

XX and Pb
YY ) and cross-domain covariances

between X and Y (Pb
XY and Pb

YX). Strongly coupled DA is
characterized by the inclusion of nonzero cross-domain co-
variances in Pb

XY and Pb
YX. Here Pb

XY controls the effect of
system X on Y , and vice versa, for Pb

YX. Since Pb is sym-
metric, Pb

XY is necessarily equal to the transpose of Pb
YX, i.e.,

Pb
XY =

(
Pb
YX

)>. Similar to Pb, the localization matrix L may
be decomposed into a 2×2 block matrix so that the localized
estimate of the background error covariance matrix is given
by the following:

L ◦Pb
=

[
LXX LXY
LYX LYY

]
◦

[
Pb
XX Pb

XY

Pb
YX Pb

YY

]
, (1)

where ◦ denotes a Schur product. In distance-based localiza-
tion, the elements in the L matrix are evaluated through a
localization function L with a specified localization radius,
R, beyond which L is zero. For example, if Pb

ij is the sample
covariance Cov(ηi,ηj ) where ηi = η(si) denotes the back-
ground error in process X at spatial location si ∈ Rn, then
the associated localization weight is Lij = L(dij ), where
dij = ‖si − sj‖. Furthermore, if d > R then L(d)= 0.

Often different model components will have different op-
timal localization radii and, hence, one may wish to use a dif-
ferent localization function for each model component (Ying
et al., 2018). That is, we may wish to use a different localiza-
tion function to form each submatrix of L in Eq. (1). Since
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we seek a symmetric L matrix, it suffices to construct LXX,
LYY , and LXY . The remaining submatrix LYX is determined
through LYX = L>XY . Let LXX and the LYY be the local-
ization functions associated with model components X and
Y , respectively. A fundamental difficulty in localization for
strongly coupled DA is how to propose a cross-localization
function LXY to populate LXY and, hence, LYX, such that
whenever a block localization matrix L is formed through
evaluation of {LXX,LYY ,LXY }, then L is positive semidefi-
nite. We call this collection of component functions a multi-
variate positive semidefinite function if it always produces a
positive semidefinite L matrix (Genton and Kleiber, 2015).
We refer to multivariate positive semidefinite functions as
multivariate localization functions when they are used to lo-
calize background error covariance matrices. In this study,
we compare four different multivariate localization func-
tions, including one that extends GC.

Similar block localization matrices are used in a scale-
dependent localization, where X and Y are not components,
but rather a decomposition of spectral wavebands from a sin-
gle process. Scale-dependent localization aims to use a dif-
ferent localization radius for each waveband, which leads to
the same question of how to construct the between-scale lo-
calization blocks. Buehner and Shlyaeva (2015) constructed
LXX and LYY through evaluation of localization func-
tions with different radii. They then constructed the cross-
localization matrix through LXY = (LXX)1/2(LYY )T/2, with
LYX defined analogously. This is appropriate for scale-
dependent localization where X and Y are defined on the
same grid and, hence, LXX and LYY are of the same dimen-
sion. It is still an open question with regard to how to extend
this construction to the strongly coupled application where
different components are defined on different grids. The mul-
tivariate localization functions we construct below could also
be used in scale-dependent localization.

In our comparison of multivariate localization functions,
we investigate the impact of the shape parameters, cross-
localization radius, and cross-localization weight factor. The
cross-localization radius, RXY , is the smallest distance such
that, for all d > RXY , we have LXY (d)= 0. For all of the
functions in this study, the cross-localization radius is related
to the within-component localization radii RXX and RYY .
We define the cross-localization weight factor, β ≥ 0, as the
value of the cross-localization function at distance d = 0, i.e.,
β := LXY (0). The cross-localization weight factor β is re-
stricted to be less than or equal to 1 in order to ensure posi-
tive semidefiniteness (Genton and Kleiber, 2015) and smaller
values of β lead to smaller analysis updates when updating
the X model component using observations of Y , and vice
versa. Each function we consider has a different maximum
allowable cross-localization weight, which we denote βmax.
Values of β greater than βmax lead to functions that are not
necessarily positive semidefinite, while values of β less than
βmax are allowable and may be useful in attenuating unde-

sirable correlations between blocks of variables (Lu et al.,
2015).

Note that, while this example shows model space localiza-
tion for a coupled model with two model components, the lo-
calization functions we develop and investigate may also be
used in observation space localization and can be extended
to an arbitrary number of model components.

2.2 Kernel convolution

Localization functions created through kernel convolution,
such as GC, may be extended to multivariate functions in
the following straightforward manner. Suppose LXX(d)=
[kX∗kX](d) and LYY (d)= [kY ∗kY ](d), where d ∈ Rn, d =
‖d‖, (∗) denotes convolution over Rn, and kX and kY
are square integrable functions. For ease of notation, let
the kernels kX and kY be normalized such that LXX(0)=
LYY (0)= 1, which is appropriate for localization functions.
Then the function LXY (d)= [kX∗kY ](d) is a compatible
cross-localization function in the sense that, when taken to-
gether {LXX,LYY ,LXY } is a multivariate, positive semidefi-
nite function.

As a proof, we define two processes Zj , where j can rep-
resent either X or Y , as the convolution of the kernel kj with
a white noise field W , as follows:

Zj (s)=

∫
Rn

kj (s− t)dWt . (2)

It is straightforward to show that the localization functions
we have defined are exactly the covariance functions for
these two processes, Lij (d)= Cov(Zi(s),Zj (t)), with i,j =
X,Y , locations s, t ∈ Rn, and distance d = ‖s− t‖. Thus,
{LXX,LYY ,LXY } is a multivariate covariance function and,
hence, a multivariate, positive semidefinite function (Genton
and Kleiber, 2015).

For localization functions created through kernel convo-
lution, the localization radii are related to the kernel radii.
Suppose the kernels kX and kY have radii cX and cY , i.e.,
kj (d)= 0 for all d > cj . The convolution of two kernels is
zero at distances greater than the sum of the kernel radii.
Thus, the implied within-component localization radii are
Rjj = 2cj , for processes j =X,Y . Furthermore, the implied
cross-localization radius is the sum of the two kernel radii
RXY = cX+cY . Equivalently, the cross-localization radius is
the average of the two within-component localization radii,
RXY =

1
2 (RXX +RYY ), which is how we will write it going

forward. Interestingly, this is exactly the cross-localization
radius used in Frolov et al. (2016) and Smith et al. (2018).

Unlike within-component localization functions, cross-
localization functions created through kernel convolu-
tion will always have LXY (0) < 1 whenever kX 6≡ kY .
The maximum allowable cross-localization weight fac-
tor (β := LXY (0)) is exactly the value produced through
the convolution, i.e., βmax = [kX∗kY ](0). Smaller cross-
localization weight factors also lead to positive semidefinite
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functions since if {LXX,LYY ,LXY } is a multivariate, pos-
itive semidefinite function; then, so is {LXX,LYY ,βLXY }
for β < 1 (Roh et al., 2015). To aid in comparisons to other
cross-localization functions, we redefine kernel-based cross-
localization functions as follows:

LXY (d)=
β

βmax
[kX∗kY ](d), (3)

with β ≤ βmax. In this way LXY (0)= β
βmax

[kX∗kY ](0)=
β, which is consistent with our definition of the cross-
localization weight factor in the previous section. We will
experiment with the impact of varying β but must always en-
sure β ≤ βmax to maintain positive semidefiniteness.

For most kernels, closed-form analytic expressions for the
convolutions above are not available. In the following two
sections, we present two cases where a closed form is avail-
able. The kernels used in these two cases are the tent function
(GC) and the indicator function (Bolin–Wallin).

2.3 Multivariate Gaspari–Cohn

The standard univariate GC localization function is con-
structed through convolution over R3 of the kernel, k(r)∝(
1− r

c

)
+

with itself. Here we define r = ‖r‖with r ∈ R3 and
z+ =max{z,0}. The kernel has radius c and is normalized so
that L(0)= [k∗k](0)= 1. As discussed in the previous sec-
tion, the localization radius, R, is related to the kernel radius
through R = 2c. We develop a multivariate extension of this
function through convolutions with two kernels. The kernels
are as follows:

kj (r)∝

(
1−

r

cj

)
+

,j =X,Y. (4)

The resulting within-component localization functions
L(GC)
jj (d)= [kj∗kj ](d) are exactly equal to GC; see

Eq. (4.10) in Gaspari and Cohn (1999). The formula for the
cross-localization function L(GC)

XY (d)= [kX∗kY ](d) is quite
lengthy and is, thus, included in Appendix A.

Recalling from the previous section that the maximum
cross-localization weight factor is βmax = [kX∗kY ](0), we
find that, for multivariate GC βmax =

5
2κ
−3
−

3
2κ
−5, where,

for convenience, we define κ2
=

max{RXX,RYY }
min{RXX,RYY }

as a ratio of
the within-component localization radii. As with all localiza-
tion functions created through kernel convolution, the cross-
localization radius is the average of the within-component
localization radii, RXY = 1

2 (RXX +RYY ). An example mul-
tivariate GC function with RXX = 45, RYY = 15, and β =
βmax is shown in Fig. 1. The multivariate GC localization
function for three or more model components is discussed in
Appendix A3.

2.4 Multivariate Bolin–Wallin

We derive our second multivariate localization function
through convolution of normalized indicator functions over

a sphere in R3. As in the previous section, the kernels are
supported on spheres of radii cX and cY as follows:

kj (r)=

√
3√

4πc3
j

Icj (r) ,j =X,Y, (5)

where Icj (r) is an indicator function, which is 1 if r ≤ cj
and 0 otherwise. The resulting within-component localiza-
tion function with localization radiusRjj = 2cj is as follows:

L(BW)
jj (d)=

(
1

2R3
jj

)(
Rjj − d

)2 (2Rjj + d) if d ≤ Rjj . (6)

This is commonly referred to as the spherical covariance
function. The label BW references Bolin and Wallin, who
performed the convolutions necessary to create the associ-
ated cross-localization function in a work aimed at a different
application of covariance functions (Bolin and Wallin, 2016).
While Bolin and Wallin never developed multivariate covari-
ance (or, in our case, localization) functions, the algebra is
the same. We present only the localization functions that re-
sult from the convolution over R3, though similar functions
for R2 and Rn are available in Bolin and Wallin (2016). Note
that there is a typo in Bolin and Wallin (2016), which has
been corrected below.

Let cX > cY be kernel radii, and then the resulting cross-
localization function is as follows:

L(BW)
XY (d)=

β

βmax
·

3

4π(cXcY )3/2

·


4πc3

Y

3 if d < cX − cY

V3

(
cX,

d2
+c2

X−c
2
Y

2d

)
+V3

(
cY ,

d2
+c2

Y−c
2
X

2d

)
if cX − cY ≤ d < cX + cY .

(7)

Here V3(r,x) denotes the volume of the spherical cap with
triangular height x of a sphere with radius r , which is given
by the following:

V3(r,x)=

{
π
3 (r − x)

2(2r + x) |x|< r
0 otherwise.

(8)

As with multivariate GC, it is convenient to define a ratio of
within-component localization radii by κ2

=
max{RXX,RYY }
min{RXX,RYY }

.
Then we can write the maximum cross-localization weight
factor as βmax = κ

−3. The cross-localization radius for BW
is RXY = 1

2 (RXX +RYY ) because it is created through ker-
nel convolution. An example multivariate BW function with
RXX = 45, RYY = 15, and β = βmax is shown in Fig. 1.

2.5 Wendland–Gneiting functions

We compare the two functions of the preceding sections to
the Wendland–Gneiting family of multivariate, compactly
supported, positive semidefinite functions. This family is
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Figure 1. There are four multivariate localization functions shown in three panels. Panel (a) shows the function LXX used to localize the
large process, X. Panel (b) shows the function LYY used to localize the small process, Y . Panel (c) shows the cross-localization function
LXY . In each panel, the color of the line shows the different multivariate functions, i.e., Gaspari–Cohn (green; solid), Bolin–Wallin (dark;
dashed), Askey (dark; dotted), and Wendland (dark; dash-dot). In the case of univariate localization, the functions in the middle panel are
used to localize all processes. The within-component localization radii are RYY = 15 and RXX = 45 for all functions. The cross-localization
radii are RXY = 30 for Gaspari–Cohn and Bolin–Wallin and RXY = 15 for Askey and Wendland.

Table 1. Selected univariate Wendland functions.

Original Wendland functions

ψ̃3,1(d)= (1− d)4+(4d + 1)

ψ̃4,2(d)=
1
3 (1− d)

6
+

(
35d2

+ 18d + 3
)

ψ̃5,3(d)= (1− d)8+
(

32d3
+ 25d2

+ 8d + 1
)

ψ̃6,4(d)=
1
5 (1− d)

10
+

(
429d4

+ 450d3
+ 210d2

+ 50d + 5
)

not generated through kernel convolution but rather through
Montée and Descente operators (Gneiting, 2002). The sim-
plest univariate function in this family is the Askey function,
which is given by the following:

L(d)=
(

1−
d

R

)ν
+

, (9)

with the shape parameter ν and localization radius R. Other
functions in this family are called Wendland functions. Sev-
eral examples of univariate Wendland functions are displayed
in Table 1.

Porcu et al. (2013) developed a multivariate version of the
Askey function, where the exponent in Eq. (9) can be dif-
ferent for each process while the localization radius R is
constant across all processes. Roh et al. (2015) found that
this multivariate localization function outperforms common
univariate localization methods when assimilating observa-
tions into the bivariate Lorenz 96 model. Daley et al. (2015)
extended the work of Porcu et al. (2013) and constructed
a multivariate version of general Wendland–Gneiting func-
tions that allow for different localization radii for different
processes. The multivariate Askey function from Daley et al.
(2015) has the following form:

L(A)ij (d)= βij

(
1−

d

Rij

)ν+γij+1

+

,

βij =

{
1 i = j

β i 6= j
, i,j =X,Y . (10)

The general form for multivariate Wendland functions is as
follows:

L(W)ij (d)= βij ψ̃ν+γij+1,k

(
d

Rij

)
,

βij =

{
1 i = j

β i 6= j
, i,j =X,Y , (11)

where ψ̃ is defined as follows:

ψ̃ν+γ+1,k(w)=
1

B(2k+ 1,ν+ γ + 1)

1∫
w

(
u2
−w2

)k
× (1− u)ν+γ du, (12)

with B as the beta function, B(x,y)=
∫ 1

0 t
x−1(1− t)y−1dt .

The parameters ν and {γij } are related to the shape of the
localization functions and are necessary to guarantee posi-
tive semidefiniteness in a given dimension. The parameter k
determines the differentiability of the Wendland functions at
lag zero (Gneiting, 2002). Note that the Askey function in
Eq. (10) is a special case of the Wendland function (Eq. 11),
which corresponds to the case k = 0. Daley et al. (2015) gave
sufficient conditions on the parameters ν, k, Rij , γij , and β
to guarantee that Eq. (11) and, hence, Eq. (10) is positive
semidefinite. In particular, for the two processes of X and Y ,
Eq. (11) is positive semidefinite on Rn when ν ≥ 1

2 (n+1)+k,

min{RXX,RYY } ≥ RXY , γXY ≥ RXY
2

(
γXX
RXX
+

γYY
RYY

)
, and the
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following condition holds:

β ≤ βmax :=√√√√( R2
XY

RXXRYY

)ν+2k+1
B(ν+ 2k+ 1,γXY + 1)2

B(ν+ 2k+ 1,γXX + 1)B(ν+ 2k+ 1,γYY + 1)
. (13)

Going forward, we consider the multivariate Askey function
(Eq. 10) and the multivariate Wendland function with k = 1
in Eq. (11). Note that, with both of these functions, the cross-
localization radius depends only on the smallest localization
radius. In fact, we choose RXY =min{RXX,RYY }, although
smaller values for RXY also produce positive semidefi-
nite functions. Thus, for given RXX and RYY , the cross-
localization radius for Askey and Wendland functions is al-
ways smaller than the cross-localization radius for GC and
BW. With the choice RXY =min{RXX,RYY }, we see that
βmax depends on the ratio max{RXX,RYY }

min{RXX,RYY }
, as in GC and BW.

Examples of multivariate Askey and Wendland functions
with RXX = 45, RYY = 15, RXY = 15, and β = βmax are
shown in Fig. 1. Important parameters for the four multivari-
ate localization functions presented in this section are sum-
marized in Table 2.

3 Experiments

In this section, we investigate the performance of a data as-
similation scheme using each of the four multivariate local-
ization functions presented in Sect. 2. We choose a setup
which isolates the impact of the cross-localization func-
tions and relate the filter performance to important cross-
localization shape parameters. As a baseline for compar-
ison, we also test two simple approaches to localization
for coupled DA. The first method uses a single localiza-
tion function and radius to localize all within- and cross-
component blocks of the background error covariance ma-
trix, i.e., LXX ≡ LYY ≡ LXY . We call this approach univari-
ate localization. In systems with very different optimal lo-
calization radii, this type of univariate localization is likely
to perform poorly; however, it does provide a useful com-
parison point. The second approach uses different local-
ization functions for each process and then zeroes out all
cross-correlations between processes, i.e., LXX 6= LYY , and
LXY ≡ 0. We call this approach weakly coupled localization
as it leads to a weakly coupled data assimilation scheme.
All of the experiments are run with the bivariate Lorenz 96
model, which is described below (Lorenz, 1996).

3.1 Bivariate Lorenz model

The bivariate Lorenz 96 model is a conceptual model of at-
mospheric processes and is comprised of two coupled pro-
cesses with distinct temporal and spatial scales. The “small”
process can be thought of as rapidly varying small-scale con-
vective fluctuations, while the “large” process can be thought
of as smooth large-scale waves. The model is periodic in the

spatial domain, as a process on a fixed latitude band would
be.

The large process, X, has K distinct variables, Xk for
k = 1, . . .,K . The small process, Y , is divided into K sec-
tors, with each sector corresponding to one large vari-
able Xk . There are J small process variables in each
sector, for a total of JK distinct Y variables, Yj,k for
j = 1, . . .,J,k = 1, . . .,K . The Y variables, arranged in or-
der, are Y1,1,Y2,1, . . .,YJ,1,Y1,2,Y2,2, . . .,YJ,K . Succinctly,
Yj−J,k = Yj,k−1 and Yj+J,k = Yj,k+1, with periodicity con-
ditions Yj,k+K = Yj,k−K = Yj,k for all j,k. TheX process is
also periodic with Xk+K =Xk−K =Xk for all k.

We represent the variables on a circle where the arc
length between neighboring Y variables is 1. Equivalently,
the radius of the circle is r = JK

2π . Variable Yj,k is lo-
cated at (r cos(θj,k),r sin(θj,k)), where θj,k =

2π
JK
(J (k−

1)+ j). We choose to place the variable Xk , located at
(r cos(φk),r sin(φk)), in the middle of the sector whose vari-
ables are coupled to it, e.g., if J = 10 then Xk is halfway
between Y5,k and Y6,k and φk = 2π

10K (10(k− 1)+ 5.5). The
placement of these variables is illustrated in Fig. 2. The chord
distance between any two variables is 2r sin

(
1θ
2

)
, where 1θ

is the angle increment, e.g., the angle increment between
Yj1,k1 and Yj2,k2 is 1θ =

∣∣θj1,k1 − θj2,k2

∣∣.
The governing equations are as follows:

dXk
dt
=−Xk−1 (Xk−2−Xk+1)−Xk

−

(
ha

b

) J∑
j=1

Yj,k +F (14)

dYj,k
dt
=−abYj+1,k

(
Yj+2,k −Yj−1,k

)
− aYj,k

+

(
ha

b

)
Xk. (15)

We follow Lorenz (1996) and let K = 36 and J = 10, so
there are 36 sectors and 10 times more small variables than
large variables. We let a = 10 and b = 10, indicating that
convective scales fluctuate 10 times faster than the larger
scales, while their amplitude is around one-tenth as large.
For the forcing, we choose F = 10, which Lorenz (1996)
found to be sufficient to make both scales behave chaotically.
All simulations are performed using an adaptive fourth-order
Runge–Kutta method with relative error tolerance 10−3 and
absolute error tolerance 10−6 (Dormand and Prince, 1980;
Shampine and Reichelt, 1997). The solutions are output in
each assimilation cycle. Unless otherwise specified, the as-
similation cycles are separated by a time interval of 0.005
model time units (MTUs), which Lorenz (1996) found to be
similar to 36 min in more realistic settings. This timescale is
10 times shorter than the timescale typically used in the uni-
variate Lorenz 96 model. The factor of 10 is consistent with
the understanding that the small process evolves 10 times
faster than the large process, where the large process is akin
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Table 2. Summary of important shape parameters for four cross-localization functions.

Function name Maximum cross-localization weight factor, Cross-localization radius
κ2
=

max{RXX,RYY }
min{RXX,RYY }

Gaspari–Cohn 5
2κ
−3
−

3
2κ
−5 1

2 (RXX +RYY )

Bolin–Wallin κ−3 1
2 (RXX +RYY )

Askey κ−(ν+1)
√

B(ν+1,γXY+1)2
B(ν+1,γXX+1)B(ν+1,γYY+1) min{RXX,RYY }

Wendland κ−(ν+2k+1)
√

B(ν+2k+1,γXY+1)2
B(ν+2k+1,γXX+1)B(ν+2k+1,γYY+1) min{RXX,RYY }

Figure 2. (a) Schematic illustrating the location of the different variables in the bivariate Lorenz 96 model, inspired by Wilks (2005). The
setup hasK = 36 sectors, with J = 10 small process variables per sector. The large process is shown on the inner circle, and each X variable
is labeled. The small process is shown, unlabeled, in the outer circle. Curly brackets show the sectors. (b) A single snapshot of the bivariate
Lorenz 96 model with variables placed on a circle. The large process X (red; dashed) has fluctuations with amplitude about 10 times larger
than the fluctuation of the small process Y (dark; solid).

to the univariate Lorenz 96 model. In choosing the coupling
strength, we follow Roh et al. (2015) and set h= 2, which
is twice as strong as the coupling used by Lorenz. Varying
the coupling strength h across values { 12 ,1,4} changes the
magnitude of the analysis errors but does not change the rel-
ative performance of different localization functions in our
experiments.

3.2 Assimilation scheme

In our experiments, we use the stochastic ensemble Kalman
filter (EnKF; Evensen, 1994; Houtekamer and Mitchell,
1998; Burgers et al., 1998). The EnKF update formula for
a single ensemble member is as follows:

xa
= xb

+K
(
y+ η−Hxb

)
, (16)

where xa is the analysis vector, xb is the background state
vector, y is the observation, each element of η is a random
draw from the probability distribution of observation errors,
and H is the linear observation operator. The Kalman gain
matrix K is as follows:

K= PbHT
(

HPbHT
+R

)−1
, (17)

where Pb is the background error covariance matrix, and R
is the observation error covariance matrix. The background
covariance matrix is approximated by a sample covariance
matrix from an ensemble, i.e., xi for i = 1, . . .,Ne, where Ne
is the ensemble size. In this experiment, we use the adaptive
inflation scheme of El Gharamti (2018) and inflate each prior
ensemble member through the following:

xb
λ = x

b+31/2
(
xb
− xb

)
, (18)

where 3 is a diagonal matrix with each element on the diag-
onal containing the inflation factor for one variable, and xb is
the background ensemble mean. We then use xb

λ in place of
xb in Eq. (16) and in the estimation of Pb. Note that estimat-
ing Pb with the inflated ensemble is equivalent to estimating
it with the original ensemble and then multiplying by 31/2

on the left and right, 31/2Pb31/2. The Bayesian approach
to adaptive inflation in El Gharamti (2018) uses observations
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to update the inflation distribution associated with each state
variable. The inflation prior has an inverse gamma distribu-
tion, with shape and rate parameters determined from the
mode and prior inflation variance. In this study, we initial-
ize the inflation factors with3= 1.1I, where I is the identity
matrix. The localization matrix L is incorporated into the es-
timate of the background covariance matrix through a Schur
product, as in Eq. (1).

We use Ne = 20 ensemble members, except where other-
wise noted. The small ensemble size is chosen to accentu-
ate the spurious correlations and, hence, the need for effec-
tive localization functions. We run each DA scheme for 3000
analysis cycles, discarding the first 1000 cycles and report-
ing statistics from the remaining 2000 cycles. Each experi-
ment is repeated 50 times with independent reference states,
which serve as the “truth” in our experiments. We generate
“observations” by adding independent Gaussian noise to the
reference state.

3.3 Experimental design

The experiments described in this section compare the per-
formance of each of the four multivariate localization func-
tions presented in Sect. 2. Performance is measured through
the root mean square (RMS) distance between the analy-
sis mean and the true state, which we refer to as the root
mean square error (RMSE). We present scaled analysis er-
rors to aid in comparison between the large and small com-
ponents. RMS errors are divided by the climatological stan-
dard deviation for each process. To standardize the com-
parison of the different shapes, we use the same within-
component localization radii for all multivariate functions.
We also investigate the performance of univariate and weakly
coupled localization functions. The univariate localization
functions are chosen to be equal to the within-component
localization function for Y , i.e., L≡ LYY . The within-
component weakly coupled localization functions are equal
to the within-component multivariate localization functions.
However, the weakly coupled cross-localization functions
are identically zero. The free localization function param-
eters are chosen to balance performance of the univariate,
multivariate, and weakly coupled forms of each localization
function. We estimate these parameters through a process
which we describe in Appendix B.

We test the performance of multivariate localization func-
tions using three different observation operators. First, we
observe all small variables and none of the large variables. In
this setup, we isolate the impact the of the cross-localization
function, which allows us to make conjectures about impor-
tant cross-localization shape parameters. Next, we flip the
setup and observe all large variables and none of the small
variables. We compare and contrast our findings with those
from the previous case. Finally, we observe both processes
and observe behavior reminiscent of both of the previous
cases. The experimental setups are grouped by observation

operator below. The source code for all experiments is pub-
licly available (see the code availability section).

3.3.1 Observe only the small process

To isolate the impact of the cross-localization functions, we
fully observe the small process and do not observe the large
process at all. In this configuration, analysis increments of
the large process can be fully attributed to the cross-domain
assimilation of observations of the small process. The treat-
ment of cross-domain background error covariances plays a
crucial role in the analysis of the large process, so we ex-
pect that changes in the cross-localization function will lead
to changes in the large process analyses. All observations are
assimilated every 0.005 MTU. We use an observation error
variance of σ 2

Y = 0.005 both in the generation of synthetic
observations from the reference state and in the assimila-
tion scheme. The observation error variance is chosen to be
about 5 % of the climatological variance of the Y process.
We also run the experiment with σ 2

Y = 0.02, or about 20 %
of the climatological variance, and find that the analyses are
degraded, but the relative performance of the different local-
ization functions is the same.

The localization parameters we use in this experiment are
given in Table 3. For all functions, we use the maximum al-
lowable cross-localization weight factor, β = βmax. In esti-
mating the optimal cross-localization weight factor, we find
that, since the only updates to X are through observations of
Y , smaller cross-localization weight factors lead to degraded
performance (Appendix B).

3.3.2 Observe only the large process

Next, we investigate the impact of the different localization
functions when we fully observe the large process and do not
observe the small process at all. The large process fluctuates
about 10 times more slowly than the small process, so we use
an assimilation cycle length that is 10 times longer than the
one in the previous configuration. All observations are assim-
ilated every 0.05 MTU. We use an observation error variance
of σ 2

X = 0.28 both in the generation of synthetic observations
from the reference state and in the assimilation scheme. The
observation error variance is chosen to be about 5 % of the
climatological variance of the X process. We also run the
experiment with σ 2

X = 1.1, or about 20 % of climatological
variance, and find that the X analyses are degraded, but the
relative performance of the different localization functions is
the same. The localization parameters we use in this exper-
iment are given in Table B1. We find that the analysis er-
rors are similar with all values of β. For consistency with the
previous experiment, we use the maximum allowable cross-
localization weight factor, β = βmax.
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Table 3. Localization parameters for the experiment observing only the small process. Note that weakly coupled parameters are not shown
in this table because they are exactly equal to the multivariate parameters, except with β = 0.

Function name Univariate parameters Multivariate parameters

Gaspari–Cohn R = 15 RYY = 15, RXX = 45, RXY = 30, β ≈ 0.38
Bolin–Wallin R = 15 RYY = 15, RXX = 45, RXY = 30, β ≈ 0.19
Askey R = 15, ν = 1 RYY = 15, RXX = 45, RXY = 15, β ≈ 0.46, ν = 1, γYY = 0, γXX = 1, γXY = 1/6
Wendland R = 15, ν = 2, k = 1 RYY = 15, RXX = 45, RXY = 15, β ≈ 0.22, ν = 2, γYY = 0, γXX = 5, γXY = 5/6, k = 1

3.3.3 Observe both processes

Finally, we observe both processes and note the impact of
the different localization functions. In this configuration, we
observe 75 % of the variables in each process, with the ob-
servation locations chosen randomly for each trial. All ob-
servations are assimilated every 0.005 MTU, in line with the
analysis cycle length for the observation of the small process
only. We use observation error variances of σ 2

Y = 0.01 and
σ 2
X = 0.57 in the generation of observations and in the assim-

ilation scheme. The observation error variance is chosen to be
about 10 % of the climatological variance of each process.
We also run the experiment with σ 2

Y = 0.02 and σ 2
X = 1.1,

or about 20 % of climatological variance, and find that the
performance is similar. The localization parameters we use
in this experiment are given in Table B2. We find that the
analysis errors grow with increasing β. Nonetheless, to dis-
tinguish between multivariate localization, which allows for
cross-domain information transfer, and weakly coupled lo-
calization, which does not, we use β = βmax for all multi-
variate functions.

3.4 Results

3.4.1 Observe only the small process

Figure 3 shows the distribution of analysis errors for the
configuration described in Sect. 3.3.1. With weakly coupled
localization functions, no information is shared in the up-
date step between the observed Y process and the unob-
servedX process. This leads to no updates of theX variables
and, eventually, to catastrophic filter divergence. In princi-
ple, the system might be able to synchronize the unobserved
(large) process through dynamical couplings with the ob-
served (small) process, but in our setup, this does not hap-
pen. Hence, weakly coupled localization functions are not
included in the figure. The analysis error distributions for
the observed Y process are similar for all functions except
multivariate Wendland. For the unobserved X process, the
analysis errors are comparable across all of the univariate lo-
calization functions. This is consistent with the fact that all
of the univariate localization functions have similar shapes,
as seen in Fig. 1b. The multivariate localization functions,
on the other hand, show great diversity of performance. The
Wendland function leads to significantly worse performance

with the multivariate function when compared to the univari-
ate functions. BW and Askey functions perform similarly for
both the multivariate and univariate cases. Out of all of the
localization functions we consider, the best performance is
achieved with multivariate GC.

To understand the improved performance with multivari-
ate GC, we consider two different shape parameters. Recall
from Sect. 3.3.1 that smaller cross-localization weights led to
worse performance when holding all other localization pa-
rameters fixed. Extending this finding, we hypothesize that
functions with a larger βmax will allow for more information
to propagate across model domains, thereby improving per-
formance in this setup. With the chosen localization parame-
ters, the multivariate Askey function has the largest cross-
localization weight factor with βmax ≈ 0.46, followed by
GC with βmax ≈ 0.38. A visual representation of the cross-
localization weight factor is shown as the height of the cross-
localization function at zero in Fig. 1c. The shape of each
cross-localization function varies not only in its height at zero
but also in its radius and smoothness near zero. For exam-
ple, while the Askey cross-localization function peaks higher
than GC, GC is generally smoother near zero and has a larger
cross-localization radius. All of these differences in shape
impact how much information propagates across model do-
mains. Based on its height and width, we hypothesize that
GC allows for sufficient cross-domain information propaga-
tion at both small and long distances, and this is why mul-
tivariate GC outperforms all other functions in this experi-
ment.

3.4.2 Observe only the large process

When we observe only the large process (as described in
Sect. 3.3.2), we find that all localization functions lead to
very similar performance. In this case, the shape of the lo-
calization function is not important. Rather, the dynamics of
the bivariate Lorenz model are driving the behavior. In this
configuration, the true background error cross-correlations
are very small (less than 0.1 even at small distances). The Y
variables are restored towards

(
h
b

)
X in their sector (Eq. 15).

Thus, even when the assimilation does not update the Y
variables, we expect to recover the mean of the Y process.
Based on climatology, we find that the conditional mean of
Yj,k , givenXk = x, isE[Yj,k|x] ≈ 0.0559x. The median root
mean square difference between Y and its conditional mean
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Figure 3. Violin plots show the distribution of analysis errors for the X and Y processes with different localization functions (Hoffmann,
2015). Analysis errors are calculated as RMS deviations from the truth and are scaled by the climatological standard deviation of the asso-
ciated process. All four univariate localization functions perform similarly, while there is a greater range in performance for the multivariate
versions of these functions. Multivariate Gaspari–Cohn shows improvement over its univariate counterparts. Univariate and multivariate
Bolin–Wallin and Askey functions appear to perform similarly. For Wendland, the multivariate function performs significantly worse than
the univariate function.

is 0.294. Our results show that the median RMSE in the Y
process ranges from 0.294 to 0.297. Thus, the filter does not
improve upon a simple linear conditional mean prediction,
which is perhaps unsurprising given the small magnitude of
error cross-correlations. Figure 4 shows the distribution of
analysis errors for univariate, weakly coupled, and multivari-
ate GC. The distributions for other functions are nearly iden-
tical and, hence, not shown.

3.4.3 Observe both processes

When we observe both processes, the precise shape of the
localization function appears to have little impact. We do see
differences between univariate, weakly coupled, and multi-
variate localization functions. Figure 4 shows analysis error
distributions for the three different versions of GC, which are
broadly representative of the behavior seen in other functions
as well. This configuration is quite unstable. About 80 % of
the trials with weakly coupled localization functions lead to
catastrophic filter divergence. Trials with univariate and mul-
tivariate localization diverge less often, but still diverge about
20 % of the time. Figure 4 shows results from only the trials
(out of 50 total) which did not diverge. Weakly coupled lo-
calization appears to lead to the best performance, when the
filter does not diverge. There is some variation in the results

across the different localization functions. In particular, mul-
tivariate Askey appears to lead to better performance than
weakly coupled Askey, but this may be attributable to the
issues with stability. Catastrophic filter divergence is a well-
documented but poorly understood phenomenon (Gottwald
and Majda, 2013; Houtekamer and Zhang, 2016, their Ap-
pendix A). The mechanism is understood in highly idealized
models (Kelly et al., 2015), but the dynamics of instability in
models as simple as the bivariate Lorenz 96 model remains
unclear and is outside the scope of the present investigation.

The complicated story with the weakly coupled schemes
indicates that, in this configuration, filter performance is
highly sensitive to the treatment of cross-domain background
error covariances. The small ensemble size, combined with
small true forecast error cross-correlations, can lead to spuri-
ously large estimates of background error cross-covariances.
Meanwhile, we have nearly complete observations of both
processes, so within-component updates are likely quite
good. Thus, zeroing out the cross terms, as in weakly coupled
schemes, may improve state estimates. On the other hand, in-
clusion of some cross-domain terms appears to be important
for stability.
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Figure 4. Violin plots show the distribution of analysis errors for all versions of the Gaspari–Cohn localization function (Hoffmann, 2015).
Analysis errors are calculated as RMS deviations from the truth and are scaled by the climatological standard deviation of the associated
process. (a, c) Results from the experiment where we observe only the large process. All functions perform similarly. (b, d) Results from
the experiment where we observe both processes. The weakly coupled localization functions appear to lead to the best performance but are
highly unstable.

4 Conclusions

In this work, we developed a multivariate extension of
the oft-used GC localization function, where the within-
component localization functions are standard GC with dif-
ferent localization radii, while the cross-localization function
is newly constructed to ensure that the resulting localization
matrix is positive semidefinite. A positive semidefinite lo-
calization matrix guarantees, through the Schur product the-
orem, that the localized estimate of the background error
covariance matrix is positive semidefinite (Horn and John-
son, 2012, theorem 7.5.3). We compared multivariate GC to
three other multivariate localization functions (including one
other newly presented multivariate function), and their uni-
variate and weakly coupled counterparts. We found that the
performance of different localization functions is highly de-
pendent on the observation operator. When we observed only
the large process, all localization functions performed simi-
larly. In an experiment where we observed both processes,
weakly coupled localization led to the smallest analysis er-
ror. When we observed only the small process, multivariate
GC led to better performance than any of the other localiza-
tion functions we considered. We hypothesized that the shape
of the GC cross-localization function allows for larger cross-
domain assimilation than the other functions. There is still an

outstanding question of how multivariate GC will perform in
other, perhaps more realistic, systems.

We found that choosing an appropriate cross-localization
weight factor, β, is crucial to the performance of the multi-
variate localization functions. This parameter determines the
amount of information which is allowed to propagate be-
tween co-located variables in different model components.
We found that this parameter should be as large as possi-
ble when observing only the small process. By contrast, the
parameter should be small or even zero when both processes
are well observed. This is consistent with other studies which
have shown the value in deflating cross-domain updates be-
tween non-interacting processes (Lu et al., 2015; Yoshida and
Kalnay, 2018).

A natural application of this work is localization in a
coupled atmosphere–ocean model. The bivariate Lorenz 96
model has a linear relationship between the large and small
scales. Hence, the results presented here are relevant to linear
coupling in climate models, e.g., the sensible heat exchange
between ocean and atmosphere which is approximately lin-
early proportional to the temperature difference. Multivariate
GC allows for within-component covariances to be localized
with GC exactly as they would be in an uncoupled setting, us-
ing the optimal localization length scale for each component
(Ying et al., 2018). The cross-localization length scale for
GC is the average of the two within-component localization
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radii, which is the same as the cross-localization radius pro-
posed in Frolov et al. (2016). We hypothesize that the cross-
localization radius is important in determining filter perfor-
mance. However, the functions considered here did not allow
for a thorough investigation of the optimal cross-localization
radius, which is an important area for future research.
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Appendix A: Derivation of multivariate Gaspari–Cohn

A1 Multivariate Gaspari–Cohn cross-localization
function

Let cX,cY be the kernel radii associated with model compo-
nents X and Y . Without loss of generality, we take cX > cY .
The formula depends on the relative sizes of cX and cY , with
two different formulas for the cases (i) cX < 2cY and (ii)
cX ≥ 2cY . In both cases, the notation is significantly simpli-
fied when we let cX = κ2cY . The first case we consider is
cY < cX < 2cY . In this case, the GC cross-localization func-
tion is as follows:
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(A1)

where βmax =
5
2κ
−3
−

3
2κ
−5 and β ≤ βmax. Note that, when

we take cX→ cY , which implies κ→ 1, this multivariate
function converges to the standard univariate GC function,
as we would expect.

The second case to consider is cX > 2cY . Again, let cX =
κ2cY . In this case, the cross-localization function is as fol-
lows:
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κ

)
+

5
8

(
|d|
κcY

)3

+
5
6

(
d
κcY

)2 (
κ3
+

1
κ3

)
−

5
4
|d|
κcY

(
κ4
+ κ2
+

1
κ2 +

1
κ4

)
−

1
6
κcY
|d|

(
κ6
+

1
κ6

)
−

3
8
κcY
|d|

(
κ4
+

1
κ4

)
+

5
12
κcY
|d|

+
3
4

(
κ5
+

1
κ5

)
+

5
4

(
κ3
+

1
κ3

)
cX ≤ |d|< cY + cX,

(A2)

where, as in the above case, βmax =
5
2κ
−3
−

3
2κ
−5 and

β ≤ βmax. Note that when cX = 2cY , Eq. (A1) is equal to
Eq. (A2).

A2 Derivation of multivariate Gaspari–Cohn
cross-localization function L(GC)

XY

The multivariate GC cross-localization function is cre-
ated through the convolution of two kernels, L(GC)

XY (d)=

[kX∗kY ](d), with kj (r)= k
0
j (‖r‖)= (1−‖r‖/cj )+, j =

X,Y , and r ∈ R3. Theorem 3.c.1 from Gaspari and Cohn
(1999) provides a framework for evaluating the necessary
convolutions. It is shown that for radially symmetric func-
tions kj (r)= k0

j (‖r‖) compactly supported on a sphere of
radius cj , j =X,Y , with cY ≤ cX the convolution over R3

given by the following:

P 0
XY (‖d‖)=

∫
k0
X(‖r‖)k

0
Y (‖d − r‖) dr, (A3)

can equivalently be written as follows:

P 0
XY (d)=

2π
d

cY∫
0

rk0
Y (r)

r+d∫
|r−d|

sk0
X(s) ds dr. (A4)

Equation (A4) is normalized to produce a localization func-
tion with LXX(0)= LYY (0)= 1. The normalization factor
P 0
jj (0) is given by the following:

P 0
jj (0)= 4π

cj∫
0

(
rk0
j (r)

)2
dr,j =X,Y. (A5)

The resulting cross-localization function is a normalized ver-
sion of Eq. (A4), as follows:

LXY (d) :=
P 0
XY (d)[

P 0
XX(0)P

0
YY (0)

]1/2 . (A6)
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With this framework, we are now able to compute the
cross-localization function using the GC kernels. We first
compute the normalization factor P 0

jj (0) using GC kernels.
Plugging in k0

j (r)=
(
1− r/cj

)
+

gives the following:

P 0
jj (0)= 4π

cj∫
0

r2(1− r/cj )2 dr =
2π
15
c3
j , j =X,Y. (A7)

Thus the denominator in Eq. (A6) is as follows:[
P 0
XX(0)P

0
YY (0)

]1/2
=

2π
15

√
c3
Xc

3
Y . (A8)

To compute the numerator in Eq. (A6), which is precisely
Eq. (A4), we consider eight different cases, i.e., four cases
for each formula presented above.

The case cX > 2cY and 0≤ |d|< cY is shown in detail
here. The other cases are derived similarly and are not shown.
The inner integral in Eq. (A4) is as follows:

r+d∫
|r−d|

sk0
X(s) ds =

r+d∫
|r−d|

s(1− s/cX) ds = 2rd

−
1

3cX

{
2r3
+ 6rd2 if r ≤ d

6r2d + 2d3 if r ≥ d
. (A9)

The outer integral in Eq. (A4) is as follows:

cY∫
0

r(1− r/cY )(2rd) dr −
1

3cX

d∫
0

r(1− r/cY )

× (2r3
+ 6rd2) dr −

1
3cX

cY∫
d

r(1− r/cY )

× (6r2d + 2d3) dr, (A10)

which simplifies to the following:

1
6
dc3
Y −

1
3cX

d

[
1

30cY
d5
−

1
10
d4
+

1
3
c2
Y d

2
+

3
10
c4
Y

]
. (A11)

Substituting Eq. (A11) into Eq. (A4) we see the following:

P 0
XY (d < cY )= 2π

(
1
6
c3
Y −

1
3cX

[
1

30cY
d5

−
1

10
d4
+

1
3
c2
Y d

2
+

3
10
c4
Y

])
. (A12)

With the proper normalization, we have the cross-
localization function as follows:

LXY (d < cY )=
15

2π
√
c3
Xc

3
Y

P 0
XY (d < cY ). (A13)

Now make the substitution κ2
=

cX
cY

, and this then becomes
the following:

LXY (d < cY )=−
1
6

(
d

κcY

)5

+
1

2κ

(
d

κcY

)4

−
5

3κ3

(
d

κcY

)2

+
5
2

(
1
κ3

)
−

3
2

(
1
κ5

)
. (A14)

Other cases are calculated similarly, with careful considera-
tion of the bounds of the kernels and integrals.

A3 Multivariate Gaspari–Cohn with three or more
length scales

Suppose we have p processes, X1, . . .,Xp with p different
localization radii R11, . . .,Rpp. Define the associate kernel
radii by cj = Rjj/2 and the associated kernels by kj (r)∝
(1− r/cj )+. Then the localization function used to taper
background error covariances between process Xi and Xj
is Lij (d)= αij [ki∗kj ](d), with the following:[
αij
]p
i,j=1, (A15)

a positive semidefinite matrix with 1’s on the diagonal, i.e.,
αii = 1. When i = j , Lii is precisely the standard univari-
ate GC function. When i 6= j , Lij is given by Eq. (A1) if
max{Rii,Rjj }< 2min{Rii,Rjj } or Eq. (A2) otherwise. The
ratio of length scales κ is defined as κ2

=
max{Rii ,Rjj }
min{Rii ,Rjj }

. We
have written Eqs. (A1) and (A2) with a coefficient β/βmax,
which is convenient for the case of two components. Here
we replace β/βmax with αij to emphasize the importance
for three or more length scales is in choosing αij such that
Eq. (A15) is positive semidefinite. Wang et al. (2021) dis-
cussed how to construct a similar matrix for multiscale local-
ization using matrix square roots. The simplest case is to let
αij = 1 for all i,j .

Appendix B: Estimation of localization parameters

A fair comparison between the univariate, weakly coupled,
and multivariate localization functions requires that thought-
ful attention be paid to the many parameter choices in the dif-
ferent localization functions. We estimate different localiza-
tion parameters for each observation operator. This section
describes our reasoning behind the selection of the localiza-
tion parameters for the experiment where we observe only
the small process. We follow the same estimation procedure
for the other two observation operators as well.

Some of the parameters are shared across functions. For
example, every univariate function has a localization radius
R. To aid in comparisons between functions, we estimate
a single univariate localization radius which is shared by
all univariate functions. Indeed, whenever different methods
share a parameter we estimate a single value for it. We es-
timate a separate cross-localization weight factor β for each
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function because each function has a different upper bound
on this parameter.

We estimate the localization parameters iteratively in the
following way. First, note that Wendland is a family of func-
tions, with parameter k controlling the smoothness. In sen-
sitivity experiments (not shown), we found that increasing k
degrades the performance of the filter. Thus, we choose to
use k = 1 for all experiments.

Next, we pick appropriate localization radii for each pro-
cess. We use a large (500-member) ensemble with no lo-
calization to compute forecast error correlations (hereafter
called the “true” forecast error correlations and shown in
Fig. B1). We see that the true forecast error correlations
for the small process Y degrade to zero in just a few spa-
tial units. The forecast errors for the large process X, by
contrast, have meaningful correlations out to about 40 spa-
tial units. This gives us a baseline for the range of local-
ization radii we should investigate. We compare the perfor-
mance of all univariate localization functions with the radius
R ∈ [5,10,15,20,30,45]. In these sensitivity experiments,
we use ν = 1 for Askey and ν = 2 for Wendland. These val-
ues of ν are as small as possible while still guaranteeing pos-
itive semidefiniteness. Figure B2 shows that univariate local-
ization radius R = 15 leads to the best performance.

Using this univariate localization radius, we now estimate
ν for univariate Askey and Wendland. To maintain positive
semidefiniteness, we require ν ≥ 1 for Askey and ν ≥ 2 for
Wendland. We compare analysis errors for process X and Y
with ν ∈ [1,1.5,2,2.5] for Askey and ν ∈ [2,2.5,3,3.5] for
Wendland. In general, we find that smaller values of ν lead
to less peaked localization functions and better performance,
and we choose ν to be as small as possible, i.e., ν = 1 for
Askey and ν = 2 for Wendland.

Next, we estimate the optimal multivariate localization
radii. We want to eliminate as much ambiguity as possible
in our comparison of univariate and multivariate localization
functions. For this reason, we choose to set the univariate
localization radius equal to one of the within-component lo-
calization radii. From Fig. B1, we know that the univariate
localization radius R = 15 is closer to the range of signif-
icant true forecast error correlations for process Y than for
process X, so we set RYY = R = 15. Now for the within-
X localization radius, we consider the following localiza-
tion values: RXX ∈ [30,40,45,50,60,75]. For Askey and
Wendland, we use RXY =min{RXX,RYY }, and γij = 0 for
all i,j =X,Y . For all functions we use βmax as the cross-
localization weight factor. The analysis errors for both pro-
cesses are minimized with values of RXX between 40 and 50
(not shown). Informed by the true forecast error correlations,
we pick RXX = 45. Now we turn to the cross-localization
radius. For Gaspari–Cohn and Bolin–Wallin, RXY is deter-
mined by RXX and RYY , with RXY = 1

2 (RXX +RYY ). For
Askey and Wendland, we require RXY ≤min{RXX,RYY } to
maintain positive semidefiniteness. From the true forecast er-
ror correlations, we see that the correlation length scale for

X is larger than the cross-correlation length scale, which
is, in turn, larger than the length scale for Y . This intuition
tells us that, ideally, we would have RYY <RXY <RXX.
However, because of the requirement for positive semidef-
initeness in Askey and Wendland, the closest we can come
is RYY = RXY <RXX. We could choose to use a smaller
cross-localization radius, but the true forecast error corre-
lation indicates that this would be a mistake, as there are
non-negligible cross-correlations out past 15 units. Thus, we
choose RXY = RYY =min{RYY ,RXX}.

Using all of the previously estimated multivariate lo-
calization parameters, we now estimate γij for all pro-
cesses i,j =X,Y for both Askey and Wendland. For Askey,
we consider all combinations of γYY ∈ [0,1,2] and γXX ∈
[0,1,2,3]. For Wendland, we consider all combinations of
γYY ∈ [0,1,2] and γXX ∈ [0,1,3,4,5,6,7,9]. The guaran-
tee of positive semidefiniteness restricts our search for γXY to
γXY ≥

RXY
2

(
γXX
RXX
+

γYY
RYY

)
. For simplicity, we take γXY to be

at the edge of the allowable range, γXY = RXY
2

(
γXX
RXX
+

γYY
RYY

)
.

While investigating γ , we use the maximum allowable cross-
localization weight factor. For Askey, we find that the best
performance comes with γXX = 1 and γYY = 0. For Wend-
land, we see that performance improves as γXX increases, all
the way out to γXX = 5. We hypothesize that this is because
increasing γXX allows for an increased cross-localization
weight factor. We use γXX = 5 and γYY = 0 for Wendland.

The final localization parameter to estimate is the cross-
localization weight factor, β. This parameter determines how
much cross-domain information propagation occurs between
the X and Y processes. Each multivariate localization func-
tion has a different upper bound on β, which depends on a
ratio of localization radii, as shown in Fig. B3. Note that set-
ting β = 0 leads to a weakly coupled scheme; so, to distin-
guish between multivariate and weakly coupled, we consider
only values of β greater than 0.1. For each multivariate lo-
calization function, we vary β between βmax and 0.1, while
holding all other parameters fixed. In this setup, the best per-
formance generally comes when the cross-correlation is at
or near its maximum allowable value, as shown in Fig. B3.
Figure B3 shows visually that the GC cross-correlation is al-
ways greater than the BW cross-correlation, which is easily
verified analytically since κ−3

≤
5
2κ
−3
−

3
2κ
−5 for all κ ≥ 1

(true by the definition of κ). Similarly, we see that the cross-
localization weight factor for Askey is greater than cross-
localization weight factor for Wendland across the range of
parameters considered here.

The localization parameters for the other two observation
operators are estimated following the same procedure. The
localization parameters for the experiment where we observe
only the large process are given in Table B1. The localiza-
tion parameters for the experiment where we observe both
processes are given in Table B2.
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Figure B1. True forecast error correlations for variables in the middle of each sector, Xk and Y5,k . Correlations between Y variables (dark
blue) decay to zero after about 5 spatial units, while correlations between X variables (dark red) are significant up to 40 spatial units away.
Cross-correlations (pink and light blue) are small everywhere but still significant out to at least 20 spatial units.

Figure B2. Analysis errors for different univariate localization radii. Analysis errors are calculated as RMS deviations from the truth and
are scaled by the climatological standard deviation of the associated process. Considering all functions, the best performance comes when
R = 15.
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Figure B3. (a) Maximum cross-localization weight factor as a function of RXX/RYY . (b, c) Average analysis errors are shown on the
y axis for different multivariate functions. The top (bottom) plot shows analysis errors for the X (Y ) process. For all functions, as the cross-
localization weight factor increases, the analysis errors decrease. Analysis errors are calculated as RMS deviations from the truth and are
scaled by the climatological standard deviation of the associated process.

Table B1. Localization parameters for the experiment where we observe only the large process.

Function name Univariate parameters Multivariate parameters

Gaspari–Cohn R = 20 RYY = 20, RXX = 40, RXY = 30, β ≈ 0.62
Bolin–Wallin R = 20 RYY = 20, RXX = 40, RXY = 30, β ≈ 0.35
Askey R = 20, ν = 1 RYY = 20, RXX = 40, RXY = 20, β ≈ 0.41, ν = 1, γYY = 2, γXX = 0, γXY = 1
Wendland R = 20, ν = 2, k = 1 RYY = 20, RXX = 40, RXY = 20, β ≈ 0.14, ν = 2, γYY = 2, γXX = 0, γXY = 1, k = 1

Table B2. Localization parameters for the experiment where we observe both processes.

Function name Univariate parameters Multivariate parameters

Gaspari–Cohn R = 15 RYY = 15, RXX = 40, RXY = 27.5, β ≈ 0.44
Bolin–Wallin R = 15 RYY = 15, RXX = 40, RXY = 27.5, β ≈ 0.23
Askey R = 15, ν = 1 RYY = 15, RXX = 40, RXY = 15, β ≈ 0.46, ν = 1, γYY = 2, γXX = 1, γXY = 19

16
Wendland R = 15, ν = 2, k = 1 RYY = 15, RXX = 40, RXY = 15, β ≈ 0.07, ν = 2, γYY = 2, γXX = 0, γXY = 1, k = 1
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