Articles | Volume 27, issue 1
https://doi.org/10.5194/npg-27-23-2020
https://doi.org/10.5194/npg-27-23-2020
Research article
 | 
05 Feb 2020
Research article |  | 05 Feb 2020

Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression

Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis

Related authors

Predicting power ramps from joint distributions of future wind speeds
Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon
Wind Energ. Sci., 7, 2393–2405, https://doi.org/10.5194/wes-7-2393-2022,https://doi.org/10.5194/wes-7-2393-2022, 2022
Short summary
Bivariate Gaussian models for wind vectors in a distributional regression framework
Moritz N. Lang, Georg J. Mayr, Reto Stauffer, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 115–132, https://doi.org/10.5194/ascmo-5-115-2019,https://doi.org/10.5194/ascmo-5-115-2019, 2019
Short summary
The impact of embedded valleys on daytime pollution transport over a mountain range
M. N. Lang, A. Gohm, and J. S. Wagner
Atmos. Chem. Phys., 15, 11981–11998, https://doi.org/10.5194/acp-15-11981-2015,https://doi.org/10.5194/acp-15-11981-2015, 2015

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Learning extreme vegetation response to climate drivers with recurrent neural networks
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024,https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary

Cited articles

Baran, S. and Möller, A.: Bivariate Ensemble Model Output Statistics Approach for Joint Forecasting of Wind Speed and Temperature, Meteorol. Atmos. Phys., 129, 99–112, https://doi.org/10.1007/s00703-016-0467-8, 2017. a
Barnes, C., Brierley, C. M., and Chandler, R. E.: New approaches to postprocessing of multi-model ensemble forecasts, Q. J. Roy. Meteor. Soc., 145, 3479–3498, https://doi.org/10.1002/qj.3632, 2019. a
Demaeyer, J. and Vannitsem, S.: Correcting for Model Changes in Statistical Post-Processing – An approach based on Response Theory, Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-57, in review, 2019. a
Gebetsberger, M., Messner, J. W., Mayr, G. J., and Zeileis, A.: Estimation Methods for Nonhomogeneous Regression Models: Minimum Continuous Ranked Probability Score versus Maximum Likelihood, Mon. Weather Rev., 146, 4323–4338, https://doi.org/10.1175/MWR-D-17-0364.1, 2018. a
Gneiting, T. and Katzfuss, M.: Probabilistic Forecasting, Annu. Rev. Stat. Appl., 1, 125–151, https://doi.org/10.1146/annurev-statistics-062713-085831, 2014. a, b
Download
Short summary
Statistical post-processing aims to increase the predictive skill of probabilistic ensemble weather forecasts by learning the statistical relation between historical pairs of observations and ensemble forecasts within a given training data set. This study compares four different training schemes and shows that including multiple years of data in the training set typically yields a more stable post-processing while it loses the ability to quickly adjust to temporal changes in the underlying data.