Articles | Volume 27, issue 1
https://doi.org/10.5194/npg-27-23-2020
https://doi.org/10.5194/npg-27-23-2020
Research article
 | 
05 Feb 2020
Research article |  | 05 Feb 2020

Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression

Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Moritz N. Lang on behalf of the Authors (10 Dec 2019)  Author's response   Manuscript 
ED: Publish as is (06 Jan 2020) by Maxime Taillardat
AR by Moritz N. Lang on behalf of the Authors (07 Jan 2020)
Download
Short summary
Statistical post-processing aims to increase the predictive skill of probabilistic ensemble weather forecasts by learning the statistical relation between historical pairs of observations and ensemble forecasts within a given training data set. This study compares four different training schemes and shows that including multiple years of data in the training set typically yields a more stable post-processing while it loses the ability to quickly adjust to temporal changes in the underlying data.