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Abstract. Non-homogeneous regression is a frequently-used post-processing method for increasing the predictive skill of

probabilistic ensemble weather forecasts. To adjust for seasonally varying error characteristics between ensemble forecasts

and corresponding observations, different time-adaptive training schemes, including the classical sliding training window, have

been developed for non-homogeneous regression. This study compares three such training approaches with the sliding-window

approach for the application of post-processing near-surface air temperature forecasts across Central Europe. The predictive5

performance is evaluated conditional on three different groups of stations located in plains, in mountain foreland, and within

mountainous terrain, as well as on a specific change in the ensemble forecast system of the European Centre for Medium-Range

Weather Forecasts (ECMWF) used as input for the post-processing.

The results show that time-adaptive training schemes using data over multiple years stabilize the temporal evolution of

the coefficient estimates, yielding an increased predictive performance for all station types tested compared to the classical10

sliding-window approach based on the most recent days only. While this may not be surprising under fully stable model

conditions, it is shown that “remembering the past” from multiple years of training data is typically also superior to the classical

sliding-window when the ensemble prediction system is affected by certain model changes. Thus, reducing the variance of the

non-homogeneous regression estimates due to increased training data appears to be more important than reducing its bias by

adapting rapidly to the most current training data only.15

1 Introduction

The need of accurate probabilistic weather forecasts steadily increases, because reliable information about the expected uncer-

tainty is crucial for optimal risk assessment in agriculture and industry, or for personal planning of outdoor activities. Therefore,

most forecast centers nowadays issue probabilistic forecasts based on ensemble prediction systems (EPSs). To quantify the un-

certainty of a specific forecast, an EPS provides a set of numerical weather predictions using slightly perturbed initial conditions20

and different model parameterizations (Palmer, 2002). However, due to various constraints and required simplifications in the

EPS, these forecasts often show systematic biases and capture only parts of the expected uncertainty; especially when EPS
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forecasts are directly compared to point measurements (Gneiting and Katzfuss, 2014). In order to increase the predictive skill

of the forecasts for specific locations, statistical post-processing is often applied to correct for these systematic errors in the

forecasts’ expectation and uncertainty.25

One of the most frequently used parametric post-processing methods is ‘ensemble model output statistics’ (EMOS) in-

troduced by Gneiting et al. (2005). To emphasize that not only the errors in the mean but also the errors in the uncertainty

are corrected, the method is often referred to as ‘non-homogeneous regression’ (NR). In the statistical literature, this type of

model is also known as distributional regression (Klein et al., 2014) since all parameters of a specific response distribution are

optimized simultaneously conditional on respective sets of covariates.30

As the error characteristics between the covariates, typically provided by the EPS, and the observations often show seasonal

dependencies and might change inter-annually over time, different time-adaptive training schemes have been developed for NR

models. Gneiting et al. (2005) proposed the so-called ‘sliding training window’ approach where the training data set consists of

EPS forecasts and observations of the most recent 30–60 days only. As soon as new data become available, the training data set

and the statistical model are updated so that the estimated coefficients automatically evolve over time and adjust to changing35

error characteristics. This makes it very handy for operational use, however, little training data can sometimes yield unrealistic

jumps in the estimated coefficients over time, especially if events which show a significantly different error characteristic enter

the training data set. Therefore, to stabilize the temporal variability of the coefficient estimates, several approaches have been

proposed in the literature. Scheuerer (2014) regularizes the estimation by only allowing the optimizer to slightly adjust the

coefficient from day to day. In an alternative approach, Möller et al. (2018) extend the training data by using not only the days40

prior to estimation, but also the days centered around the same calendar day over all previous years available. This idea of

using a rolling centered training data set over multiple years is similar to the concept of using annual cyclic smooth functions

to capture seasonality as employed by Lang et al. (2019). These smooth functions are also known as regression splines (Wood,

2017), where the estimate of each point in the function only depends on data in its closer neighborhood; this allows for a

smooth and stable evolution of the coefficients over the year.45

Alternative time-adaptive models are based on historical analogs or non-parametric approaches. For approaches employing

analogs (Junk et al., 2015; Barnes et al., 2019), training sets are selected to consist of past forecast cases with atmospheric

conditions similar to those on the day of interest. Such methods may lead to models that are able to account for the flow-

dependency of EPS errors (Pantillon et al., 2018; Rodwell et al., 2018). However, the definition and computation of similarity

measures is far from straightforward, and substantial methodological developments may be required to obtain suitably extensive50

training data sets for stable model estimation (Hamill et al., 2008; Lerch and Baran, 2017). For non-parametric approaches

(Taillardat et al., 2016; Henzi et al., 2019) or semi-parametric approaches (Rasp and Lerch, 2018; Schlosser et al., 2019),

time-adaptive choices of the training data are typically abandoned as well, as interactions between the day of the year and

other covariates can capture the potential time-adaptiveness. Therefore, analog-based and non-parametric approaches will not

be pursued further in the context of this work.55

In addition to the training scheme employed, an important data-specific aspect which has to be considered in post-processing

is that the EPS may change over time (Hamill, 2018). This also motivates the recent study of Demaeyer and Vannitsem (2019),
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which introduces the promising concept of a post-processing method specifically dealing with model changes in a simplified

physical setup. However, as stated by the authors, more research would be required to transfer their findings to real case

scenarios. When using data of an operational EPS, changes in the underlying numerical model such as, e.g., an increased60

horizontal resolution, can typically lead to sudden transitions in the predictive performance of the EPS and hence affect the

error characteristics of the data. If the training data set used to estimate the statistical post-processing model contains data of a

previous EPS version which significantly differs from the current one, it can result in a loss of the predictive performance.

This paper presents a comparison of four widely-used different time-adaptive training schemes proposed in the literature

that employ alternative strategies to account for varying error-characteristics in the data. To show a wide spectrum of possible65

approaches in a unified setup – rather than finding the universally best method – we consider typical basic applications of

these training schemes and refrain from more elaborate tuning or combinations. A case study is shown for post-processed

2m temperature forecasts for three different groups of stations across Central Europe in the midlatitudes, namely stations

in the plain, in the foreland, and within mountainous terrain (Fig. 1). The study highlights the advantages and drawbacks of

the different approaches in different topographical environments and investigates the impact of a change in the horizontal70

resolution of the EPS, which is expected to have a particularly pronounced effect on the predictive performance.

The structure of the paper is as follows: Section 2 explains the different methods and the comparison setup including the

underlying data. In Sect. 3, the different time-adaptive training schemes are compared in terms of their coefficient paths and

their predictive performance. Finally, a summary and conclusion is given in Sect. 4.

2 Methodology and comparison setup75

The different training schemes for NR models proposed in the literature try to adapt to various kinds of error sources that can

occur in post-processing, both in space and time. In order to provide a unifying view and to fix jargon, we first discuss these

different error sources and then introduce the training schemes considered along with the comparison setup employed.

2.1 Sources of errors in post-processing

NR models aim to adjust for errors and biases in EPS forecasts but, of course, the NR models can be affected by errors80

and misspecifications themselves. Therefore, we try to carefully distinguish the two different models involved with their as-

sociated errors, i.e., the numerical weather prediction model underlying the EPS vs. the statistical NR model employed for

post-processing.

The skill of the EPS can be quantified in EPS forecast biases and variances which (i) typically vary for different locations

conditional on the surrounding terrain, (ii) often show cyclic seasonal patterns, and (iii) can experience non-seasonal temporal85

changes, e.g., due to changes in the EPS itself.

In addition to the error sources in the employed EPS, the performance of the statistical post-processing itself will typically

also (iv) differ at different measurement sites, (v) strongly depend on the amount of training data used, and (vi) whether it is

affected by effects that are not accounted for in the NR specification.
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Clearly, larger training samples (v) will lead to more reliable predictions when the NR specification (vi) – in terms of response90

distribution, covariates and corresponding effects, link functions, estimation method, etc. – appropriately captures the error

characteristics in the relationship between EPS forecasts and actual observations. However, when these error characteristics

differ in space (i and iv) and/or in time (ii and iii), it is not obvious what the best strategy for training the NR is. Extending

the training data (v) in space or time will reduce the variance of the NR estimation but might also introduce bias if the NR

specification (vi) is not adapted. Thus, this is a classical bias-variance trade-off problem and we investigate which strategies95

for dealing with this are most useful in a typical temperature forecasting situation.

To fix jargon, we employ the terms “model” and “bias” without further qualifiers when referring to the NR model in post-

processing. Whereas when referring to the numerical weather prediction model we employ “EPS model“ and “EPS bias”.

Moreover, we refer to a statistical model whose estimates have small bias and variance as stable.

2.2 Non-homogeneous regression with time-adaptive training schemes100

Non-homogeneous regression as originally introduced by Gneiting et al. (2005) is a special case of distributional regression,

where a response variable y is assumed to follow a specific probability distribution D with distribution parameters θk,k =

1, . . . ,K:

y ∼D(θ1, . . . ,θK) =D(h1(η1), . . . ,hK(ηK)), (1)

where each parameter of the distribution is linked to an additive predictor ηk via a link function hk to ensure its appropriate105

co-domain. In case of post-processing air temperatures, the normal distribution is typically employed (Gneiting and Katzfuss,

2014), and Eq. (1) can be rewritten as

y ∼N (µ,σ). (2)

In the classical NR (Gneiting et al., 2005), the two distribution parameters location µ and scale σ are expressed by the ensemble

mean m and ensemble variance or standard deviation s, respectively:110

µ= ηµ = β0 +β1 ·m, (3)

log(σ) = ησ = γ0 + γ1 · s, (4)

with β• and γ• being the corresponding intercept and slope coefficients. Here, we use the logarithm link to ensure positivity of

the scale parameter σ, however, a quadratic link with additional parameter constraints for the coefficients as used by Gneiting

et al. (2005) would also be feasible. In this study, we regard the statistical model specifications according to Eq. (2)–(4), but115

all concepts of time-adaptive training schemes could easily be transferred to other response distributions D, to alternative link

functions h(·), or to more complex additive predictors η with additional covariates.

The regression coefficients β• and γ• are estimated by minimizing a loss function over a training data set containing historical

pairs of observations and EPS forecasts. In this study, we employ maximum likelihood estimation, which performs very similar

to minimizing the continuous ranked probability score (CRPS, Gneiting and Raftery 2007) as used by Gneiting et al. (2005)120
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when the response distribution is well specified (Gebetsberger et al., 2018). For a single observation y, the log-likelihood L of

the normal distribution is given by

L(µ,σ|y) = log

{
1

σ
φ

(
y−µ
σ

)}
, (5)

where φ(·) is the probability density function of the normal distribution. The coefficients β• and γ•, specified in Eq. (3) and

(4), are derived by minimizing the sum of negative log-likelihood contributions L over the training data. The larger the training125

data the more stable is the estimation in case the statistical model is well specified; however, if the covariate’s skill varies either

seasonally or non-seasonally over time, this leads to the bias-variance trade-off between preferable large training data sets for

stable estimation and the benefit of shorter training periods which allow to adjust more rapidly to changes in the data or, to

be precise, in the error characteristics of the data (see Sect. 2.1). In the following, four approaches are discussed how to gain

informative time-adaptive training data sets while ensuring a stable estimation.130

2.2.1 Sliding-window

The sliding-window approach originally introduced by Gneiting et al. (2005) uses the most recent days prior to the day of

interest as training data for estimation. For post-processing 2m temperature forecasts, Gneiting et al. (2005) found the best

predictive performance for training periods between 30 and 45 days with substantial gains in increasing the training period

beyond 30 days and slow but steady performance losses for training lengths beyond 45 days. According to Gneiting et al.135

(2005), the latter is presumably a result of seasonally varying EPS forecast biases.

In this study, we use a period of 40 days for the sliding-window approach, which is a frequently used compromise (e.g.,

Baran and Möller 2017; Gneiting et al. 2005; Wilson et al. 2007). However, as discussed in Gneiting et al. (2005), different

training periods might perform better for distinct weather variables, locations, forecast steps, or model specifications. Common

choices in the literature include training lengths between 15 and 100 days, for example depending on whether the estimation140

of regression coefficients is performed station-specific or jointly for multiple locations at once.

2.2.2 Regularized sliding-window

A regularized adaption of the classical sliding-window approach was introduced by Scheuerer (2014) in order to stabilize the

estimation based on early stopping in statistical learning. The motivation is that gradient-based optimizers adjust the starting

values by iteratively taking steps in the direction of the steepest descent of a distinct loss function until some convergence145

condition is fulfilled. These steps are largest in the first iteration and getting smaller towards the optimum. Thus, the most

important adjustments are made during the first steps, while further adjustments often improve the fit to unimportant or even

random features in the data which can lead to wiggly coefficient paths over time and ultimately to an overfitting (Scheuerer,

2014).

Therefore, Scheuerer (2014) proposes to use the coefficients of the previous day as starting values and to stop the optimizer150

after a single iteration to stabilize the evolution of the coefficient estimates. A drawback of his approach is that it implies

that the estimation never converges and in case of poor starting values or strong truly observed temporal changes in the data
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the obtained coefficients might be incorrect (Scheuerer, 2014). For post-processing precipitation amounts employing a left-

censored generalized extreme value distribution, Scheuerer (2014) obtained better results with regularized coefficients than

without regularization.155

For the regularized sliding-window approach used in this study, we employ the quasi-Newton Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm as in Scheuerer (2014) and stop the optimizer after one single iteration. For the first time, we let

the BFGS algorithm perform 10 iterations and use (β0,β1)
> = (0,1)> as starting values in the location parameter µ and

(γ0,γ1)
> = (0.1,1)> as starting values in the scale parameter σ. According to Scheuerer (2014) a single iteration might not

always provide the optimum degree of regularization, however, for the presented comparison study a single iteration yields a160

regularized setup which is on the opposite side of the possible model spectrum compared to the classical sliding-window ap-

proach which runs until convergence. In comparison to Scheuerer (2014), we perform maximum likelihood estimation instead

of CRPS minimization.

2.2.3 Sliding-window plus

As already pointed out by Gneiting et al. (2005), training data from previous years could additionally be included in the sliding-165

window approach to address seasonal effects. This should reduce the variance in the estimation of the regression coefficients,

which stabilizes the evolution of the coefficients similar to the regularized sliding-window approach.

This idea has recently been pursued by Vogel et al. (2018) for the construction of climatological reference forecasts, and by

Möller et al. (2018) for a post-processing approach based on D-vine copulas in which much more coefficients than in classical

NR need to be estimated, making a more extensive training data set necessary. Their so-called ‘refined training data set’ consists170

of the most 45 recent days prior to the day of interest, plus 91 days centered around the same calendar day over all previous

years available. Including multiple years yields more stable estimates while, on the other hand, there is the trade-off of losing

the ability to quickly adjust to non-seasonal temporal changes in the EPS forecast biases. The approach of Möller et al. (2018)

can be seen as time-adaptive version of the seasonal training proposed by Hemri et al. (2016) who consider training data sets

comprised of days from all previous years within the same season (winter/summer) as the day of interest.175

In this study, to be comparable to the sliding-window approach we use the most recent 40 days prior to estimation and a

respective 81 days interval centered around the day of interest over the previous years available in the training data.

2.2.4 Smooth model

If we reformulate the sliding-window plus approach, it is very similar to fitting an annual cyclic smooth function where the

points of the function only depend on data points in the closer neighborhood, specified by the sliding window length.180

Cyclic smooth functions belong to the broader model class of generalized additive models (GAMs, Hastie and Tibshirani,

1986), which allow one to include potentially nonlinear effects in the linear predictors η. Smooth functions are also referred

to as regression splines and are directly linked to the model parameters as additive terms in η. Introductory material for cyclic

smooth functions conditional on the day of the year can be found in Lang et al. (2019) and a comprehensive summary on

GAMs is given in Wood (2017).185
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Table 1. Overview of time-adaptive training schemes, distinguished by model specification/estimation and training data selection correspond-

ing to errors sources (vi) and (v), respectively. The basic model specification refers to Eq. (3)–(4) in contrast to the extended Eq. (6)–(7).

Model Data

Name Specification Estimation Years Seasons

Sliding-window Basic Maximum likelihood Current Current

Regularized sliding-window Basic Early stopping Current Current

Sliding-window plus Basic Maximum likelihood Multiple Current

Smooth model Extended Penalized Multiple All

To account for seasonal variations we only need to fit one single model, here called smooth model, over a training data set

with several years of data. The effects included allow the coefficients to smoothly evolve over the year, which leads to the

following adaptions in Eq. (3) and (4) for the location µ and scale σ, respectively:

µ= ηµ = β0 + f0(doy)+ (β1 + f1(doy)) · m, (6)

log(σ) = ησ =γ0 + g0(doy)︸ ︷︷ ︸
seasonally varying

intercept

+ (γ1 + g1(doy))︸ ︷︷ ︸
seasonally varying

slope

· s, (7)190

with m and s being the ensemble mean and ensemble standard deviation, respectively; β• and γ• are regression coefficients,

and f•(doy) and g•(doy) employ cyclic regression splines conditional on the day of the year (Wood, 2017). The regression

coefficients β0 and γ0, and β1 and γ1 are unconditional on the day of the year and can be interpreted as global intercept or

slope coefficients, respectively.

2.3 Comparison setup195

2.3.1 NR training schemes

The NR training schemes presented in Sect. 2.2 deal with the potential temporal error sources from Sect. 2.1 in different ways

(see Table 1 for an overview). The classic sliding-window employs the basic NR model equations from Eq. (3)–(4) and avoids

potential biases in the NR model estimation by using only very recent data from the same year and season. Compared to this,

the regularized sliding-window and sliding-window plus both try to stabilize the coefficient estimates by reducing the variance200

– either through regularized estimation (vi) or by considering multiple years (v). The smooth model differs from all of these

by modifying both the model (vi) and data (v) specification, using the extended model specification from Eq. (6)–(7) fitted by

penalized estimation to a large data set comprising several years and all seasons.

Potential spatial differences (i) and (iv) are handled for all training schemes in the same way: The NR models are estimated

separately for each station and subsequently evaluated in groups of terrain types (plain, foreland, alpine). The underlying205

EPS data – described subsequently – is the same for all NR training schemes and thus affected by the same seasonal (ii) and

non-seasonal changes (iii).
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Figure 1. Overview of the study area with selected stations classified as plain, foreland, and alpine station sites. The two highlighted and

labeled stations, Hamburg and Innsbruck, are discussed in detail in Sect. 3.1. Elevation data are obtained from the SRTM-30 m digital

elevation model (NASA JPL, 2013).

2.3.2 Data sets

For validation of the training schemes we consider 2 m temperature ensemble forecasts and corresponding observations at

15 measurement sites located across Austria, Germany, and Switzerland. The sites are chosen to investigate the impact of210

potential error sources in space (i) and (iv), e.g., through varying discrepancies between the real and the EPS topography. The

data comprises three groups of five stations located either in plains, mountain foreland, and within mountainous terrain (see

Fig. 1). The estimated statistical models for the stations Hamburg and Innsbruck, highlighted by symbols with white borders,

are discussed in more detail in Sect. 3.1.

As covariates for Eq. (3)–(7), we employ the ensemble mean m and the ensemble standard deviation s of bilinearly inter-215

polated 2 m temperature forecasts issued by the global 50-member EPS of the European Centre for Medium-Range Weather

Forecasts (ECMWF). We assess forecast steps from +12 h to +72 h ahead on a 12 hourly temporal resolution for the EPS run

initialized at 0000 UTC and use data from March 8, 2010 to March 7, 2019.

This period has been selected in order to investigate the impact of non-seasonal long-term changes in the EPS model (iii)

that is not reflected in the NR model specifications. Namely, the horizontal resolution of the ECMWF EPS changed from the220

the previous version (cycle 36r1; January 26, 2010) to the new version on March 8, 2016 (cycle 41r2). This specific model

change was chosen among various others as it modifies the height of the terrain and, thus, likely introduces an EPS bias for
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Figure 2. (a) Illustrative example of how the training data sets are composed for the four different time-adaptive training schemes.

(b) Schematic overview of the training and validation data sets employed in this study with regard to the change in the horizontal reso-

lution of the ECMWF EPS on March 8, 2016 (cycle 41r2). For training, up to four years of data are used in all data sets; for validation, two

years of data are used for data sets A and B, and one year for data set C.

temperature forecasts directly affecting the coefficient estimates; other changes such as modified model parameterizations or

improvements in the analysis-scheme are expected to have a minor impact on the post-processing of 2 m temperatures. It is of

specific interest how the sliding-window plus and the smooth model are affected if the training period comprises data from both225

the ‘old EPS version’ before the change in the horizontal resolution as well as the ‘new EPS version’. Thus, we construct three

data sets with different validation period that are either (A) not affected by this EPS model change at all, (B) start immediately

after the model change, or (C) with some time lag after change.

To understand how this affects the different training schemes, we first illustrate in Figure 2a how training and validation

period are selected for each scheme. For the three sliding-window approaches, the NR models are re-estimated every day as230

the validation date rolls through the validation period (hatched area). In contrast, the smooth model is estimated only once

for the entire validation period based on a fixed training data period of four years prior to the validation period. For a fair

comparison, the training data for the sliding-window plus model is also restricted to four years prior to each validation date.

Now Fig. 2b illustrates how the three data sets A, B, and C are selected in relation to the EPS change on March 8, 2016:

– Data set A: All models are trained and evaluated without being affected by the EPS change.235
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– Data set B: All models start with a training period entirely before the EPS change but a validation period entirely after

the change. However, for the sliding-window and regularized sliding window approaches the training period quickly rolls

across the change point and after 40 days they are not affected by it anymore. For the sliding-window plus the training

data also rolls into the new EPS version but still partially uses data from the old EPS version. Finally, as the smooth

model is only estimated once it cannot adapt at all to the new EPS version.240

– Data set C: Effects from A and B are mixed so that the smooth model and the sliding-window plus model use data from

both the old and new EPS version, while the classical sliding-window and regularized sliding-window models already

use only data from the new EPS version.

The validation period is 2 years for A and B and 1 year for C. A total number of 731/730/365 NR models has to be estimated

for the three sliding-window approaches, while only 1/1/1 smooth model is required for data sets A/B/C per station and forecast245

step. The computation time for the various sliding-window approaches is in the order of seconds, whereas the estimation of the

smooth model, including full MCMC sampling, is in the order of minutes on a standard computer.

3 Results

This section assesses the performance of the different time-adaptive training schemes. First, the temporal evolution of the

estimated coefficients are shown for two stations representative for one measurement site in the plains and one in mountainous250

terrain. Afterwards, the predictive performance of the training schemes is evaluated in terms of the CRPS conditional on the

three data sets with and without the change in the horizontal resolution of the EPS (Fig. 2) and grouped for stations classified

as topographically plain, mountain foreland, and alpine sites (Fig. 1).

3.1 Coefficient paths

Figure 3 shows the estimated coefficients for Innsbruck at forecast step +36 h conditional on the day of the year. The coefficient255

paths are plotted for the different time-adaptive training schemes for two years included in the validation period of data set A.

The pronounced seasonal evolution of the coefficients for all training schemes shows that the EPS’ forecast bias and skill varies

seasonally which makes a time-adaptive training scheme mandatory to capture these characteristics in the post-processing.

During summer, a slope coefficient β1 close to one in the location parameter µ and a high slope coefficient γ1 in the scale

parameter σ indicate a better performance of the EPS compared to the cold season.260

In comparison to the other time-adaptive training schemes, the classical sliding-window approach (Fig. 3a, d, g, j) shows

very strong outliers and an unstable temporal evolution for all coefficients with distinct differences during the two subsequent

validation years; this is more pronounced for the scale parameter σ where the estimates seem to be more volatile than for

the location parameter µ. All strategies extending the classical sliding-window approach smooth the temporal evolution of

the coefficients to a certain extent while maintaining the overall seasonal cyclic pattern. For the regularized sliding-window265

approach (Fig. 3b, e, h, k), the stabilization strongly differs for the individual coefficients and some of the estimated coefficients
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Figure 3. Temporal evolution of regression coefficients for the validation period in data set A for Innsbruck at forecast step +36 h (valid at

1200 UTC). The coefficient paths are shown for the coefficients β0 (a–c) and β1 (d–f) in the location parameter µ, and for the coefficients

γ0 (g–i) and γ1 (j–l) in the scale parameter σ based on the sliding-window, regularized sliding-window, and sliding-window plus approach

(dashed, from left to right) compared to the smooth model approach (solid line). The coefficient paths are plotted for the consecutive calendar

years 2014, 2015, and 2016 as dashed, dotted, and two-dashed line, respectively. The grey shading represents the 95% credible intervals of

the coefficients in the smooth model based on MCMC sampling.

seem to need rather long to adapt during the transition periods; the latter could indicate that a single iteration step might not

be sufficient in this study. The coefficient paths for the sliding-window plus approach (Fig. 3c, f, i, l) and for the smooth model
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Figure 4. As Fig. 3, but for Hamburg at forecast step +36 h (valid at 1200 UTC).

(Fig. 3a–l; solid line) look very similar with minor distortions during the cold season. Due to the definition of the smooth

model, its coefficient paths show the most stable evolution but with the lowest ability to react to abrupt changes in the error270

characteristics.

For Hamburg (Fig. 4) by contrast to Innsbruck, the information content of the mean EPS temperature forecast is quite

high throughout the year. This yields a lower bias correction and an almost one-to-one mapping of the ensemble mean to

the location parameter µ indicated by a coefficient β1 close to one. Despite the different post-processing characteristics, the
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temporal evolution of the coefficient paths is similar to the one for Innsbruck which confirms our previous findings: For275

the extended sliding-window approaches the coefficients have indeed very little seasonal variability, while for the classical

sliding-window approach the coefficients show unrealistically strong fluctuations over time without a clear seasonal pattern

(Fig. 4a, d, g, j). As for Innsbruck, the regularized sliding-window approach has a rather unrealistic stepwise evolution for some

coefficients (Fig. 4b, e, h, k). The coefficient paths for the sliding-window plus approach (Fig. 4c, f, i, l) and the smooth model

(Fig. 4; solid line) look comparable. These results support the bias-variance trade-off that regularizing or smoothing stabilizes280

the coefficient paths, while loosing the ability to rapidly react to temporal changes in the data.

3.2 Predictive performance

After the illustrative evaluation of the coefficients’ temporal evolution for the different time adaptive training schemes, Fig. 5

shows aggregated CRPS skill scores for groups of five respective stations classified as topographically plain, mountain foreland,

and alpine sites (Fig. 1) regarding the data sets A, B, and C (Fig. 2). In all panels the regularized sliding-window approach, the285

sliding-window plus approach, and the smooth model is compared to the classical sliding-window approach as a reference.

– For data set A, the regularized sliding-window approach shows only little improvements for the plain and foreland, and

an overall performance loss for alpine stations. By contrast, the sliding-window plus and the smooth model approaches

show distinct improvements over the classical sliding-window approach with largest values for alpine sites.

– For data set B at stations in the plains and foreland, the mean predictive skill behaves similarly to data set A, except290

that the smooth model shows a slightly larger variance. For alpine stations, the regularized sliding-window approach

performs slightly worse than in data set A, while the two approaches using training data over multiple years do no longer

outperform the reference.

– For data set C at stations in the plains and foreland, the predictive skill is again similar to data set A with slight perfor-

mance losses. For alpine stations, the regularized sliding-window approach shows even less skill as in data set B, while295

the two other approaches again outperform the sliding-window approach and are on a similar level as in data set A.

The validation of the different time-adaptive training schemes shows that the sliding-window plus approach and the smooth

model perform overall similar and are clearly superior for all station types compared to the classical sliding-window approach.

However, the smooth model shows the highest variance in the predictive performance in case of a change in the EPS, especially

in mountainous terrain (data sets B and C); this is likely due to its reduced ability to adapt to temporal changes in the data.300

Furthermore, the validation shows that the regularized sliding-window approach seems to have difficulties in mountainous

terrain and yields only minor improvements for plain and foreland sites.

4 Summary and conclusion

Non-homogeneous regression (NR) is a widely used method to statistically post-process ensemble weather forecasts. In its

original version it was used for temperature forecasts employing a Gaussian response distribution, but over the last decade305
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Figure 5. CRPS skill scores clustered into groups of stations located in the plain, in the mountain foreland near the Alps, and within

mountainous terrain and for the out-of-sample validation periods according to the different data sets: Data set A without the change in the

horizontal resolution of the EPS, data set B with the EPS change in between the training and the validation data sets, and data set C with the

EPS change withing training data (Fig. 2). Compared are the different time-adaptive training schemes specified in Sect. 2.2 with the classical

sliding-window approach as a reference; note that ‘sliding-window’ is abbreviated as SW in the figure. Each box-whisker contains aggregated

skill scores over the forecast steps from +12 h to +72 h on a 12 hourly temporal resolution and over five respective weather stations (Fig. 1).

Skill scores are in percent, positive values indicate improvements over the reference.

various statistical model extensions have been proposed for other quantities employing different response distributions or to

enhance its predictive performance. When estimating NR models there is always a trade-off between large enough training
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data sets to get stable estimates and still allowing the statistical model to adjust to temporal changes in the statistical error

characteristics of the data. Therefore, different training schemes with specific advantages and drawbacks have been developed

as presented in this paper. To show a wide spectrum of possible approaches in a unified setup, we consider typical basic310

applications of the training schemes and refrain from more elaborate tuning or combinations.

The classical sliding-window approach has the advantage that no extensive training data set is required which allows the

statistical model to adjust itself rapidly to changing forecast biases, for example in case of changes in the EPS. On the other

hand, statistical models trained on a small training data set have typically large variance in the estimation of the regression

coefficients, which can yield unstable wiggly coefficient paths. Additional regularization allows one to stabilize the evolution315

of the regression coefficients without losing the simplicity of the classical sliding-window approach. However, inappropriate

settings of the optimizer as, e.g., unrealistic starting values or insufficient update steps, can quickly lead to incorrect coefficients.

The alternative sliding-window plus strategy foregoes regularization but stabilizes the coefficients by using an extended training

data set which includes data from the same season over several years. Compared to the classical approach the method requires

historical data and partially loses its ability to rapidly adjust to changes in the error characteristics. The last approach presented320

in this paper can be seen as a generalization of the sliding-window plus approach. Rather than using a training data set centered

around the date of interest, the smooth model makes use of all historical data in combination with cyclic regression splines

which allows the coefficients to smoothly evolve over the year.

The differences between the methods presented can be seen in the coefficient paths shown in Fig. 3 and 4. The coefficients

of the classical sliding-window approach show strong fluctuations and pronounced peaks throughout the year. Regularization325

allows to stabilize the evolution, however, strong step-wise changes in the coefficient paths still occur. The two methods using

data from multiple years perform comparably similar with stable coefficient paths over the year. Figure 5 confirms that more

stable estimates have a positive impact on the predictive performance. The sliding-window plus approach and the smooth model

show an overall improvement of about 3–5 % (in median) over the classical sliding-window approach, while the regularized

sliding-window only partially outperforms the sliding-window training scheme. Even in case of the model change chosen to330

demonstrate the effect of non-seasonal long-term changes on the coefficient estimates, the training schemes using multiple

years of data are still superior to the ones using the most recent days only, even if they technically allow to adjust to the EPS

change more rapidly.

To conclude, all four training schemes shown in this paper have their advantages in particular applications. If only short

periods of training data are available (< 1 year), the classical sliding-window approach may already provide sufficiently good335

estimates. However, as soon as one has access to longer historical data sets, the approaches using data from multiple years

become superior due to a more stable coefficients’ evolution over time which yields an overall improved performance. This

even holds in case of the EPS change considered in this study, but may be different for other changes or EPSs. While the

sliding-window plus is a natural extension of the classical sliding-window approach and, therefore, can be estimated by the

same software, the smooth model approach can be seen as a generalization and only a single model has to be estimated for all340

seasons using all available data. The smooth model yields, by definition, the smoothest and most stable coefficient paths but

with the lowest ability to adjust itself to a new error characteristic.
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