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Abstract. Non-homogeneous regression is a frequently used
post-processing method for increasing the predictive skill
of probabilistic ensemble weather forecasts. To adjust for
seasonally varying error characteristics between ensemble
forecasts and corresponding observations, different time-
adaptive training schemes, including the classical sliding
training window, have been developed for non-homogeneous
regression. This study compares three such training ap-
proaches with the sliding-window approach for the applica-
tion of post-processing near-surface air temperature forecasts
across central Europe. The predictive performance is evalu-
ated conditional on three different groups of stations located
in plains, in mountain foreland, and within mountainous ter-
rain, as well as on a specific change in the ensemble forecast
system of the European Centre for Medium-Range Weather
Forecasts (ECMWF) used as input for the post-processing.

The results show that time-adaptive training schemes us-
ing data over multiple years stabilize the temporal evolution
of the coefficient estimates, yielding an increased predictive
performance for all station types tested compared to the clas-
sical sliding-window approach based on the most recent days
only. While this may not be surprising under fully stable
model conditions, it is shown that “remembering the past”
from multiple years of training data is typically also superior
to the classical sliding-window approach when the ensem-
ble prediction system is affected by certain model changes.
Thus, reducing the variance of the non-homogeneous regres-
sion estimates due to increased training data appears to be
more important than reducing its bias by adapting rapidly to
the most current training data only.

1 Introduction

The need for accurate probabilistic weather forecasts is
steadily increasing, because reliable information about the
expected uncertainty is crucial for optimal risk assessment in
agriculture and industry or for personal planning of outdoor
activities. Therefore, most forecast centers nowadays issue
probabilistic forecasts based on ensemble prediction systems
(EPSs). To quantify the uncertainty of a specific forecast,
an EPS provides a set of numerical weather predictions us-
ing slightly perturbed initial conditions and different model
parameterizations (Palmer, 2002). However, due to various
constraints and required simplifications in the EPS, these
forecasts often show systematic biases and capture only parts
of the expected uncertainty, especially when EPS forecasts
are directly compared to point measurements (Gneiting and
Katzfuss, 2014). In order to increase the predictive skill of
the forecasts for specific locations, statistical post-processing
is often applied to correct for these systematic errors in the
forecasts’ expectation and uncertainty.

One of the most frequently used parametric post-
processing methods is “ensemble model output statistics”
(EMOS) introduced by Gneiting et al. (2005). To emphasize
that not only the errors in the mean but also the errors in the
uncertainty are corrected, the method is often referred to as
“non-homogeneous regression” (NR). In the statistical litera-
ture, this type of model is also known as distributional regres-
sion (Klein et al., 2014) since all parameters of a specific re-
sponse distribution are optimized simultaneously conditional
on respective sets of covariates.
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As the error characteristics between the covariates, typi-
cally provided by the EPS, and the observations often show
seasonal dependencies and might change inter-annually over
time, different time-adaptive training schemes have been de-
veloped for NR models. Gneiting et al. (2005) proposed
the so-called “sliding training window” approach where the
training data set consists of EPS forecasts and observations
of the most recent 30–60 d only. As soon as new data be-
come available, the training data set and the statistical model
are updated so that the estimated coefficients automatically
evolve over time and adjust to changing error characteristics.
This makes it very handy for operational use; however, lit-
tle training data can sometimes yield unrealistic jumps in the
estimated coefficients over time, especially if events which
show a significantly different error characteristic enter the
training data set. Therefore, to stabilize the temporal variabil-
ity of the coefficient estimates, several approaches have been
proposed in the literature. Scheuerer (2014) regularizes the
estimation by only allowing the optimizer to slightly adjust
the coefficient from day to day. In an alternative approach,
Möller et al. (2018) extend the training data by using not only
the days prior to estimation, but also the days centered around
the same calendar day over all previous years available. This
idea of using a rolling centered training data set over multiple
years is similar to the concept of using annual cyclic smooth
functions to capture seasonality as employed by Lang et al.
(2019). These smooth functions are also known as regression
splines (Wood, 2017), where the estimate of each point in the
function only depends on data in its closer neighborhood; this
allows for a smooth and stable evolution of the coefficients
over the year.

Alternative time-adaptive models are based on historical
analogs or non-parametric approaches. For approaches em-
ploying analogs (Junk et al., 2015; Barnes et al., 2019), train-
ing sets are selected to consist of past forecast cases with at-
mospheric conditions similar to those on the day of interest.
Such methods may lead to models that are able to account
for the flow dependency of EPS errors (Pantillon et al., 2018;
Rodwell et al., 2018). However, the definition and computa-
tion of similarity measures are far from straightforward, and
substantial methodological developments may be required to
obtain suitably extensive training data sets for stable model
estimation (Hamill et al., 2008; Lerch and Baran, 2017).
For non-parametric approaches (Taillardat et al., 2016; Henzi
et al., 2019) or semi-parametric approaches (Rasp and Lerch,
2018; Schlosser et al., 2019), time-adaptive choices of the
training data are typically abandoned as well, as interactions
between the day of the year and other covariates can capture
the potential time adaptiveness. Therefore, analog-based and
non-parametric approaches will not be pursued further in the
context of this work.

In addition to the training scheme employed, an impor-
tant data-specific aspect which has to be considered in post-
processing is that the EPS may change over time (Hamill,
2018). This also motivates the recent study of Demaeyer and

Vannitsem (2019), which introduces the promising concept
of a post-processing method specifically dealing with model
changes in a simplified physical setup. However, as stated by
the authors, more research would be required to transfer their
findings to real case scenarios. When using data of an opera-
tional EPS, changes in the underlying numerical model, e.g.,
an increased horizontal resolution, can typically lead to sud-
den transitions in the predictive performance of the EPS and
hence affect the error characteristics of the data. If the train-
ing data set used to estimate the statistical post-processing
model contains data of a previous EPS version which signif-
icantly differs from the current one, it can result in a loss of
the predictive performance.

This paper presents a comparison of four widely used dif-
ferent time-adaptive training schemes proposed in the litera-
ture that employ alternative strategies to account for varying
error characteristics in the data. To show a wide spectrum of
possible approaches in a unified setup – rather than finding
the universally best method – we consider typical basic ap-
plications of these training schemes and refrain from more
elaborate tuning or combinations. A case study is shown for
post-processed 2 m temperature forecasts for three different
groups of stations across central Europe at the midlatitudes,
namely, stations in the plain, in the foreland, and within
mountainous terrain (Fig. 1). The study highlights the advan-
tages and drawbacks of the different approaches in different
topographical environments and investigates the impact of a
change in the horizontal resolution of the EPS, which is ex-
pected to have a particularly pronounced effect on the pre-
dictive performance.

The structure of the paper is as follows: Sect. 2 explains the
different methods and the comparison setup including the un-
derlying data. In Sect. 3, the different time-adaptive training
schemes are compared in terms of their coefficient paths and
their predictive performance. Finally, a summary and conclu-
sion are given in Sect. 4.

2 Methodology and comparison setup

The different training schemes for NR models proposed in
the literature try to adapt to various kinds of error sources
that can occur in post-processing, both in space and time. In
order to provide a unifying view and to fix jargon, we first
discuss these different error sources and then introduce the
training schemes considered along with the comparison setup
employed.
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2.1 Sources of errors in post-processing

NR models aim to adjust for errors and biases in EPS fore-
casts but, of course, the NR models can be affected by errors
and misspecifications themselves. Therefore, we try to care-
fully distinguish between the two different models involved
with their associated errors, i.e., the numerical weather pre-
diction model underlying the EPS vs. the statistical NR
model employed for post-processing.

The skill of the EPS can be quantified in EPS forecast
biases and variances, which (i) typically vary for different
locations conditional on the surrounding terrain, (ii) often
show cyclic seasonal patterns, and (iii) can experience non-
seasonal temporal changes, e.g., due to changes in the EPS
itself.

In addition to the error sources in the employed EPS,
the performance of the statistical post-processing itself will
typically also (iv) differ at different measurement sites,
(v) strongly depend on the amount of training data used, and
(vi) whether it is affected by effects that are not accounted
for in the NR specification.

Clearly, larger training samples (v) will lead to more reli-
able predictions when the NR specification (vi) – in terms of
response distribution, covariates and corresponding effects,
link functions, estimation method, etc. – appropriately cap-
tures the error characteristics in the relationship between EPS
forecasts and actual observations. However, when these error
characteristics differ in space (i and iv) and/or in time (ii and
iii), it is not obvious what the best strategy for training the
NR is. Extending the training data (v) in space or time will
reduce the variance of the NR estimation but might also in-
troduce bias if the NR specification (vi) is not adapted. Thus,
this is a classical bias-variance trade-off problem, and we in-
vestigate which strategies for dealing with this are most use-
ful in a typical temperature forecasting situation.

To fix jargon, we employ the terms “model” and “bias”
without further qualifiers when referring to the NR model
in post-processing, whereas when referring to the numerical
weather prediction model we employ “EPS model“ and “EPS
bias”. Moreover, we refer to a statistical model whose esti-
mates have small bias and variance as stable.

2.2 Non-homogeneous regression with time-adaptive
training schemes

Non-homogeneous regression as originally introduced by
Gneiting et al. (2005) is a special case of distributional re-
gression, where a response variable y is assumed to follow a
specific probability distribution D with distribution parame-
ters θk,k = 1, . . .,K:

y ∼D(θ1, . . .,θK)=D(h1(η1), . . .,hK(ηK)), (1)

where each parameter of the distribution is linked to an ad-
ditive predictor ηk via a link function hk to ensure its appro-
priate co-domain. In the case of post-processing air tempera-

tures, the normal distribution is typically employed (Gneiting
and Katzfuss, 2014), and Eq. (1) can be rewritten as

y ∼N (µ,σ ). (2)

In the classical NR (Gneiting et al., 2005), the two distribu-
tion parameters location µ and scale σ are expressed by the
ensemble mean m and ensemble variance or standard devia-
tion s, respectively:

µ= ηµ = β0+β1 ·m, (3)
log(σ )= ησ = γ0+ γ1 · s, (4)

with β• and γ• being the corresponding intercept and slope
coefficients. Here, we use the logarithm link to ensure pos-
itivity of the scale parameter σ ; however, a quadratic link
with additional parameter constraints for the coefficients as
used by Gneiting et al. (2005) would also be feasible. In this
study, we regard the statistical model specifications accord-
ing to Eqs. (2)–(4), but all concepts of time-adaptive training
schemes could easily be transferred to other response distri-
butions D, to alternative link functions h(·), or to more com-
plex additive predictors η with additional covariates.

The regression coefficients β• and γ• are estimated by
minimizing a loss function over a training data set con-
taining historical pairs of observations and EPS forecasts.
In this study, we employ maximum likelihood estimation,
which performs very similarly to minimizing the continuous
ranked probability score (CRPS, Gneiting and Raftery, 2007)
as used by Gneiting et al. (2005) when the response distribu-
tion is well specified (Gebetsberger et al., 2018). For a single
observation y, the log-likelihood L of the normal distribution
is given by

L(µ,σ |y)= log
{

1
σ
φ

(
y−µ

σ

)}
, (5)

where φ(·) is the probability density function of the normal
distribution. The coefficients β• and γ•, specified in Eqs. (3)
and (4), are derived by minimizing the sum of negative log-
likelihood contributions L over the training data. The larger
the training data, the more stable the estimation in case the
statistical model is well specified; however, if the covariate’s
skill varies either seasonally or non-seasonally over time,
this leads to the bias-variance trade-off between preferable
large training data sets for stable estimation and the benefit
of shorter training periods which allow one to adjust more
rapidly to changes in the data or, to be precise, in the error
characteristics of the data (see Sect. 2.1). In the following,
four approaches are discussed on how to gain informative
time-adaptive training data sets while ensuring a stable esti-
mation.

2.2.1 Sliding-window

The sliding-window approach originally introduced by
Gneiting et al. (2005) uses the most recent days prior to
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the day of interest as training data for estimation. For post-
processing 2 m temperature forecasts, Gneiting et al. (2005)
found the best predictive performance for training periods
between 30 and 45 d with substantial gains in increasing the
training period beyond 30 d and slow but steady performance
losses for training lengths beyond 45 d. According to Gneit-
ing et al. (2005), the latter is presumably a result of season-
ally varying EPS forecast biases.

In this study, we use a period of 40 d for the sliding-
window approach, which is a frequently used compromise
(e.g., Baran and Möller, 2017; Gneiting et al., 2005; Wilson
et al., 2007). However, as discussed in Gneiting et al. (2005),
different training periods might perform better for distinct
weather variables, locations, forecast steps, or model spec-
ifications. Common choices in the literature include train-
ing lengths between 15 and 100 d, for example, depending
on whether the estimation of regression coefficients is per-
formed station-specifically or jointly for multiple locations
at once.

2.2.2 Regularized sliding-window

A regularized adaption of the classical sliding-window ap-
proach was introduced by Scheuerer (2014) in order to stabi-
lize the estimation based on early stopping in statistical learn-
ing. The motivation is that gradient-based optimizers adjust
the starting values by iteratively taking steps in the direc-
tion of the steepest descent of a distinct loss function un-
til some convergence condition is fulfilled. These steps are
largest in the first iteration and get smaller towards the opti-
mum. Thus, the most important adjustments are made during
the first steps, while further adjustments often improve the
fit to unimportant or even random features in the data, which
can lead to wiggly coefficient paths over time and ultimately
to an overfitting (Scheuerer, 2014).

Therefore, Scheuerer (2014) proposes to use the coeffi-
cients of the previous day as starting values and to stop the
optimizer after a single iteration to stabilize the evolution
of the coefficient estimates. A drawback of his approach is
that it implies that the estimation never converges and, in the
case of poor starting values or strong truly observed tempo-
ral changes in the data, the obtained coefficients might be
incorrect (Scheuerer, 2014). For post-processing precipita-
tion amounts employing a left-censored generalized extreme
value distribution, Scheuerer (2014) obtained better results
with regularized coefficients than without regularization.

For the regularized sliding-window approach used in
this study, we employ the quasi-Newton Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm as in Scheuerer (2014)
and stop the optimizer after one single iteration. For the first
time, we let the BFGS algorithm perform 10 iterations and
use (β0,β1)

>
= (0,1)> as starting values in the location pa-

rameter µ and (γ0,γ1)
>
= (0.1,1)> as starting values in the

scale parameter σ . According to Scheuerer (2014) a single
iteration might not always provide the optimum degree of

regularization; however, for the presented comparison study
a single iteration yields a regularized setup which is on the
opposite side of the possible model spectrum compared to
the classical sliding-window approach which runs until con-
vergence. In comparison to Scheuerer (2014), we perform
maximum likelihood estimation instead of CRPS minimiza-
tion.

2.2.3 Sliding-window plus

As already pointed out by Gneiting et al. (2005), training data
from previous years could additionally be included in the
sliding-window approach to address seasonal effects. This
should reduce the variance in the estimation of the regression
coefficients, which stabilizes the evolution of the coefficients
similarly to the regularized sliding-window approach.

This idea has recently been pursued by Vogel et al. (2018)
for the construction of climatological reference forecasts and
by Möller et al. (2018) for a post-processing approach based
on D-vine copulas in which many more coefficients than in
classical NR need to be estimated, making a more extensive
training data set necessary. Their so-called “refined training
data set” consists of the most 45 recent days prior to the
day of interest plus 91 d centered around the same calen-
dar day over all previous years available. Including multiple
years yields more stable estimates, while, on the other hand,
there is the trade-off of losing the ability to quickly adjust
to non-seasonal temporal changes in the EPS forecast biases.
The approach of Möller et al. (2018) can be seen as time-
adaptive version of the seasonal training proposed by Hemri
et al. (2016), who consider training data sets comprised of
days from all previous years within the same season (win-
ter/summer).

In this study, to be comparable to the sliding-window ap-
proach, we use the most recent 40 d prior to estimation and
a respective 81 d interval centered around the day of interest
over the previous years available in the training data.

2.2.4 Smooth model

If we reformulate the sliding-window plus approach, it is very
similar to fitting an annual cyclic smooth function where the
points of the function only depend on data points in the closer
neighborhood, specified by the sliding-window length.

Cyclic smooth functions belong to the broader model class
of generalized additive models (GAMs, Hastie and Tibshi-
rani, 1986), which allow one to include potentially nonlinear
effects in the linear predictors η. Smooth functions are also
referred to as regression splines and are directly linked to the
model parameters as additive terms in η. Introductory mate-
rial for cyclic smooth functions conditional on the day of the
year can be found in Lang et al. (2019), and a comprehensive
summary of GAMs is given in Wood (2017).

To account for seasonal variations we only need to fit one
single model, here called the smooth model, over a training
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data set with several years of data. The effects included al-
low the coefficients to smoothly evolve over the year, which
leads to the following adaptations in Eq. (3) and (4) for the
location µ and scale σ , respectively:

µ= ηµ = β0+ f0(doy)+ (β1+ f1(doy)) · m, (6)
log(σ )= ησ = γ0+ g0(doy)︸ ︷︷ ︸

seasonally varying
intercept

+ (γ1+ g1(doy))︸ ︷︷ ︸
seasonally varying

slope

· s, (7)

with m and s being the ensemble mean and ensemble stan-
dard deviation, respectively; β• and γ• are regression coef-
ficients, and f•(doy) and g•(doy) employ cyclic regression
splines conditional on the day of the year (Wood, 2017). The
regression coefficients β0 and γ0, as well as β1 and γ1, are
unconditional on the day of the year and can be interpreted
as global intercept or slope coefficients, respectively.

2.3 Comparison setup

2.3.1 NR training schemes

The NR training schemes presented in Sect. 2.2 deal with
the potential temporal error sources from Sect. 2.1 in differ-
ent ways (see Table 1 for an overview). The classic sliding-
window employs the basic NR model equations from Eqs. (3)
to (4) and avoids potential biases in the NR model estima-
tion by using only very recent data from the same year and
season. Compared to this, the regularized sliding-window
and sliding-window plus approaches both try to stabilize
the coefficient estimates by reducing the variance – either
through regularized estimation (vi) or by considering mul-
tiple years (v). The smooth model differs from all of these
by modifying both the model (vi) and data (v) specification,
using the extended model specification from Eqs. (6) to (7)
fitted by penalized estimation to a large data set comprising
several years and all seasons.

Potential spatial differences (i) and (iv) are handled for all
training schemes in the same way: the NR models are esti-
mated separately for each station and subsequently evaluated
in groups of terrain types (plain, foreland, alpine). The un-
derlying EPS data – described subsequently – are the same
for all NR training schemes and are thus affected by the same
seasonal (ii) and non-seasonal changes (iii).

2.3.2 Data sets

For validation of the training schemes, we consider 2 m tem-
perature ensemble forecasts and corresponding observations
at 15 measurement sites located across Austria, Germany,
and Switzerland. The sites are chosen to investigate the im-
pact of potential error sources in space (i) and (iv), e.g.,
through varying discrepancies between the real and EPS to-
pography. The data comprises three groups of five stations lo-
cated either in plains, in mountain foreland, or within moun-
tainous terrain (see Fig. 1). The estimated statistical models

Figure 1. Overview of the study area with selected stations classi-
fied as plain, foreland, and alpine station sites. The two highlighted
and labeled stations, Hamburg and Innsbruck, are discussed in de-
tail in Sect. 3.1. Elevation data are obtained from the SRTM-30 m
digital elevation model (NASA JPL, 2013).

for stations Hamburg and Innsbruck, highlighted by symbols
with white borders, are discussed in more detail in Sect. 3.1.

As covariates for Eqs. (3)–(7), we employ the ensemble
mean m and the ensemble standard deviation s of bilinearly
interpolated 2 m temperature forecasts issued by the global
50-member EPS of the European Centre for Medium-Range
Weather Forecasts (ECMWF). We assess forecast steps from
+12 to +72 h ahead at a 12-hourly temporal resolution for
the EPS run initialized at 00:00 UTC and use data from
8 March 2010 to 7 March 2019.

This period has been selected in order to investigate
the impact of non-seasonal long-term changes in the EPS
model (iii) that is not reflected in the NR model specifi-
cations; i.e., the horizontal resolution of the ECMWF EPS
changed from the previous version (cycle 36r1; 26 Jan-
uary 2010) to the new version on 8 March 2016 (cycle 41r2).
This specific model change was chosen among various oth-
ers as it modifies the height of the terrain and, thus, likely
introduces an EPS bias for temperature forecasts directly af-
fecting the coefficient estimates; other changes such as mod-
ified model parameterizations or improvements in the analy-
sis scheme are expected to have a minor impact on the post-
processing of 2 m temperatures. It is of specific interest how
the sliding-window plus and the smooth model are affected if
the training period comprises data from both the “old EPS
version” before the change in the horizontal resolution as
well as the “new EPS version”. Thus, we construct three data
sets with different validation periods that are either (a) not
affected by this EPS model change at all, (b) start immedi-
ately after the model change, or (c) have some time lag after
change.
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Table 1. Overview of time-adaptive training schemes, distinguished by model specification/estimation and training data selection correspond-
ing to errors sources (vi) and (v), respectively. The basic model specification refers to Eqs. (3)–(4), in contrast to the extended Eqs. (6)–(7).

Model Data

Name Specification Estimation Years Seasons

Sliding-window Basic Maximum likelihood Current Current
Regularized sliding-window Basic Early stopping Current Current
Sliding-window plus Basic Maximum likelihood Multiple Current
Smooth model Extended Penalized Multiple All

Figure 2. (a) Illustrative example of how the training data sets are composed for the four different time-adaptive training schemes.
(b) Schematic overview of the training and validation data sets employed in this study with regard to the change in the horizontal reso-
lution of the ECMWF EPS on 8 March 2016 (cycle 41r2). For training, up to 4 years of data are used in all data sets; for validation, 2 years
of data are used for data sets A and B, and 1 year for data set C.

To understand how this affects the different training
schemes, we first illustrate in Fig. 2a how training and val-
idation periods are selected for each scheme. For the three
sliding-window approaches, the NR models are re-estimated
every day as the validation date rolls through the validation
period (hatched area). In contrast, the smooth model is esti-
mated only once for the entire validation period based on a
fixed training data period of 4 years prior to the validation pe-
riod. For a fair comparison, the training data for the sliding-
window plus model are also restricted to 4 years prior to each
validation date.

Now Fig. 2b illustrates how the three data sets A, B, and C
are selected in relation to the EPS change on 8 March 2016.

– Data set A. All models are trained and evaluated without
being affected by the EPS change.

– Data set B. All models start with a training period en-
tirely before the EPS change but a validation period en-

tirely after the change. However, for the sliding-window
and regularized sliding-window approaches, the training
period quickly rolls across the change point, and after
40 d they are not affected by it anymore. For sliding-
window plus the training data also roll into the new
EPS version but still partially use data from the old EPS
version. Finally, as the smooth model is only estimated
once, it cannot adapt at all to the new EPS version.

– Data set C. Effects from A and B are mixed so that the
smooth model and the sliding-window plus model use
data from both the old and new EPS versions, while
the classical sliding-window and regularized sliding-
window models already use only data from the new EPS
version.

The validation period is 2 years for A and B and 1 year for
C. A total number of 731/730/365 NR models has to be es-
timated for the three sliding-window approaches, while only
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1/1/1 smooth model is required for data sets A/B/C per sta-
tion and forecast step. The computation time for the vari-
ous sliding-window approaches is in the order of seconds,
whereas the estimation of the smooth model, including full
Markov chain Monte Carlo (MCMC) sampling, is in the or-
der of minutes on a standard computer.

3 Results

This section assesses the performance of the different time-
adaptive training schemes. First, the temporal evolutions of
the estimated coefficients are shown for two stations rep-
resentative of one measurement site in the plains and one
in mountainous terrain. Afterwards, the predictive perfor-
mance of the training schemes is evaluated in terms of the
CRPS conditional on the three data sets with and without
the change in the horizontal resolution of the EPS (Fig. 2)
and grouped for stations classified as topographically plain,
mountain foreland, and alpine sites (Fig. 1).

3.1 Coefficient paths

Figure 3 shows the estimated coefficients for Innsbruck at
forecast step +36 h conditional on the day of the year. The
coefficient paths are plotted for the different time-adaptive
training schemes for 2 years included in the validation period
of data set A. The pronounced seasonal evolution of the coef-
ficients for all training schemes shows that the EPS’ forecast
bias and skill varies seasonally, which makes a time-adaptive
training scheme mandatory to capture these characteristics
in the post-processing. During summer, a slope coefficient
β1 close to 1 in the location parameter µ and a high slope
coefficient γ1 in the scale parameter σ indicate a better per-
formance of the EPS compared to the cold season.

In comparison to the other time-adaptive training schemes,
the classical sliding-window approach (Fig. 3a, d, g, j) shows
very strong outliers and an unstable temporal evolution for all
coefficients with distinct differences during the 2 subsequent
validation years; this is more pronounced for the scale param-
eter σ where the estimates seem to be more volatile than for
the location parameter µ. All strategies extending the classi-
cal sliding-window approach smooth the temporal evolution
of the coefficients to a certain extent while maintaining the
overall seasonal cyclic pattern. For the regularized sliding-
window approach (Fig. 3b, e, h, k), the stabilization strongly
differs for the individual coefficients, and some of the esti-
mated coefficients seem to need rather long to adapt during
the transition periods; the latter could indicate that a single
iteration step might not be sufficient in this study. The coeffi-
cient paths for the sliding-window plus approach (Fig. 3c, f,
i, l) and for the smooth model (Fig. 3a–l; solid line) look very
similar with minor distortions during the cold season. Due to
the definition of the smooth model, its coefficient paths show

the most stable evolution but with the lowest ability to react
to abrupt changes in the error characteristics.

For Hamburg (Fig. 4) by contrast to Innsbruck, the in-
formation content of the mean EPS temperature forecast is
quite high throughout the year. This yields a lower bias cor-
rection and an almost one-to-one mapping of the ensemble
mean to the location parameter µ indicated by a coefficient
β1 close to 1. Despite the different post-processing character-
istics, the temporal evolution of the coefficient paths is sim-
ilar to the one for Innsbruck, which confirms our previous
findings: for the extended sliding-window approaches the co-
efficients have indeed very little seasonal variability, while
for the classical sliding-window approach the coefficients
show unrealistically strong fluctuations over time without a
clear seasonal pattern (Fig. 4a, d, g, j). As for Innsbruck, the
regularized sliding-window approach has a rather unrealis-
tic stepwise evolution for some coefficients (Fig. 4b, e, h, k).
The coefficient paths for the sliding-window plus approach
(Fig. 4c, f, i, l) and the smooth model (Fig. 4; solid line) look
comparable. These results support the bias-variance trade-
off where regularizing or smoothing stabilizes the coefficient
paths while losing the ability to rapidly react to temporal
changes in the data.

3.2 Predictive performance

After the illustrative evaluation of the coefficients’ temporal
evolution for the different time-adaptive training schemes,
Fig. 5 shows aggregated CRPS skill scores for groups of
five respective stations classified as topographically plain,
mountain foreland, and alpine sites (Fig. 1) regarding data
sets A, B, and C (Fig. 2). In all panels the regularized sliding-
window approach, the sliding-window plus approach, and the
smooth model are compared to the classical sliding-window
approach as a reference.

– For data set A, the regularized sliding-window approach
shows only little improvements for the plain and fore-
land and an overall performance loss for alpine stations.
By contrast, the sliding-window plus and smooth model
approaches show distinct improvements over the classi-
cal sliding-window approach, with the largest values for
alpine sites.

– For data set B at stations in the plains and foreland, the
mean predictive skill behaves similarly to data set A,
except that the smooth model shows a slightly larger
variance. For alpine stations, the regularized sliding-
window approach performs slightly worse than in data
set A, while the two approaches using training data over
multiple years no longer outperform the reference.

– For data set C at stations in the plains and foreland, the
predictive skill is again similar to data set A with slight
performance losses. For alpine stations, the regularized
sliding-window approach shows even less skill than in
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Figure 3. Temporal evolution of regression coefficients for the validation period in data set A for Innsbruck at forecast step +36 h (valid at
12:00 UTC). The coefficient paths are shown for the coefficients β0 (a–c) and β1 (d–f) in the location parameter µ and for the coefficients
γ0 (g–i) and γ1 (j–l) in the scale parameter σ based on the sliding-window, regularized sliding-window, and sliding-window plus approaches
(dashed, from left to right) compared to the smooth model approach (solid line). The coefficient paths are plotted for the consecutive calendar
years 2014, 2015, and 2016 as dashed, dotted, and two-dashed lines, respectively. The grey shading represents the 95 % credible intervals of
the coefficients in the smooth model based on MCMC sampling.

data set B, while the two other approaches again outper-
form the sliding-window approach and are on a similar
level to that in data set A.

The validation of the different time-adaptive training
schemes shows that the sliding-window plus approach and
the smooth model perform overall similarly and are clearly
superior for all station types compared to the classical
sliding-window approach. However, the smooth model shows
the highest variance in the predictive performance in the case
of a change in the EPS, especially in mountainous terrain
(data sets B and C); this is likely due to its reduced ability to
adapt to temporal changes in the data. Furthermore, the val-
idation shows that the regularized sliding-window approach
seems to have difficulties in mountainous terrain and yields
only minor improvements for plain and foreland sites.

4 Summary and conclusion

Non-homogeneous regression (NR) is a widely used method
to statistically post-process ensemble weather forecasts. In
its original version it was used for temperature forecasts em-
ploying a Gaussian response distribution, but over the last
decade various statistical model extensions have been pro-
posed for other quantities employing different response dis-
tributions or to enhance its predictive performance. When es-
timating NR models there is always a trade-off between large
enough training data sets to get stable estimates and still al-
lowing the statistical model to adjust to temporal changes in
the statistical error characteristics of the data. Therefore, dif-
ferent training schemes with specific advantages and draw-
backs have been developed as presented in this paper. To
show a wide spectrum of possible approaches in a unified
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Figure 4. As Fig. 3 but for Hamburg at forecast step +36 h (valid at 12:00 UTC).

setup, we consider typical basic applications of the training
schemes and refrain from more elaborate tuning or combina-
tions.

The classical sliding-window approach has the advantage
that no extensive training data set is required, which allows
the statistical model to adjust itself rapidly to changing fore-
cast biases, for example, in the case of changes in the EPS.
On the other hand, statistical models trained on a small train-
ing data set have typically large variance in the estimation of
the regression coefficients, which can yield unstable wiggly
coefficient paths. Additional regularization allows one to sta-
bilize the evolution of the regression coefficients without los-
ing the simplicity of the classical sliding-window approach.
However, inappropriate settings of the optimizer, e.g., unre-
alistic starting values or insufficient update steps, can quickly
lead to incorrect coefficients. The alternative sliding-window
plus strategy foregoes regularization but stabilizes the coeffi-
cients by using an extended training data set which includes
data from the same season over several years. Compared to
the classical approach the method requires historical data and
partially loses its ability to rapidly adjust to changes in the er-

ror characteristics. The last approach presented in this paper
can be seen as a generalization of the sliding-window plus ap-
proach. Rather than using a training data set centered around
the date of interest, the smooth model makes use of all histor-
ical data in combination with cyclic regression splines, which
allows the coefficients to smoothly evolve over the year.

The differences between the methods presented can be
seen in the coefficient paths shown in Figs. 3 and 4. The coef-
ficients of the classical sliding-window approach show strong
fluctuations and pronounced peaks throughout the year. Reg-
ularization allows one to stabilize the evolution; however,
strong step-wise changes in the coefficient paths still occur.
The two methods using data from multiple years perform
comparably similarly and show stable coefficient paths over
the year. Figure 5 confirms that more stable estimates have a
positive impact on the predictive performance. The sliding-
window plus approach and the smooth model show an overall
improvement of about 3 %–5 % (in median) over the classi-
cal sliding-window approach, while the regularized sliding-
window only partially outperforms the sliding-window train-
ing scheme. Even in the case of the model change chosen to
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Figure 5. CRPS skill scores clustered into groups of stations located in the plain, in the mountain foreland near the Alps, and within
mountainous terrain and for the out-of-sample validation periods according to the different data sets: data set A without the change in the
horizontal resolution of the EPS, data set B with the EPS change in between the training and validation data sets, and data set C with the
EPS change within training data (Fig. 2). Compared are the different time-adaptive training schemes specified in Sect. 2.2 with the classical
sliding-window approach as a reference; note that “sliding-window” is abbreviated as SW in the figure. Each box-and-whisker contains
aggregated skill scores over the forecast steps from+12 to+72 h at a 12-hourly temporal resolution and over five respective weather stations
(Fig. 1). Skill scores are in percent and positive values indicate improvements over the reference.

demonstrate the effect of non-seasonal long-term changes on
the coefficient estimates, the training schemes using multiple
years of data are still superior to the ones using the most re-
cent days only, even if they technically allow adjustment to
the EPS change more rapidly.

To conclude, all four training schemes shown in this paper
have their advantages in particular applications. If only short
periods of training data are available (< 1 year), the classical
sliding-window approach may already provide sufficiently
good estimates. However, as soon as one has access to longer
historical data sets, the approaches using data from multiple
years become superior due to a more stable coefficient evo-
lution over time, which yields an overall improved perfor-
mance. This even holds in the case of the EPS change con-
sidered in this study, but may be different for other changes
or EPSs. While the sliding-window plus approach is a natu-
ral extension of the classical sliding-window approach and,
therefore, can be estimated by the same software, the smooth
model approach can be seen as a generalization, and only
a single model has to be estimated for all seasons using all
available data. The smooth model yields, by definition, the
smoothest and most stable coefficient paths but with the low-
est ability to adjust itself to a new error characteristic.

Code availability. All computations are performed in R 3.6.1 (R
Core Team, 2019) https://www.R-project.org/ (last access: 10 De-
cember 2019). The statistical models using a sliding-window ap-
proach are based on R package crch (Messner et al., 2016)
(https://doi.org/10.32614/RJ-2016-012) employing a frequentist
maximum likelihood approach. The statistical models using a
time-adaptive training scheme by fitting cyclic smooth func-
tions are fitted with R package bamlss (Umlauf et al., 2018)
(https://doi.org/10.1080/10618600.2017.1407325). The package
provides a flexible toolbox for distribution regression models in a
Bayesian framework; introductory material can be found at http:
//BayesR.R-Forge.R-project.org/ (last access: 10 December 2019).
The computation of the CRPS is based on R package scoringRules
(Jordan et al., 2019) (https://doi.org/10.18637/jss.v090.i12).
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