Articles | Volume 31, issue 4
https://doi.org/10.5194/npg-31-535-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-31-535-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Learning extreme vegetation response to climate drivers with recurrent neural networks
Francesco Martinuzzi
CORRESPONDING AUTHOR
Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
Institute for Earth System Science & Remote Sensing, Leipzig University, Leipzig, Germany
Remote Sensing Centre for Earth System Research, Leipzig University and UFZ, Leipzig, Germany
Miguel D. Mahecha
Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
Institute for Earth System Science & Remote Sensing, Leipzig University, Leipzig, Germany
Remote Sensing Centre for Earth System Research, Leipzig University and UFZ, Leipzig, Germany
German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
Gustau Camps-Valls
Image Processing Laboratory (IPL), Universitat de València, València, Spain
David Montero
Institute for Earth System Science & Remote Sensing, Leipzig University, Leipzig, Germany
Remote Sensing Centre for Earth System Research, Leipzig University and UFZ, Leipzig, Germany
German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
Tristan Williams
Image Processing Laboratory (IPL), Universitat de València, València, Spain
Karin Mora
Institute for Earth System Science & Remote Sensing, Leipzig University, Leipzig, Germany
Remote Sensing Centre for Earth System Research, Leipzig University and UFZ, Leipzig, Germany
Related authors
Francesco Martinuzzi, Miguel D. Mahecha, David Montero, Lazaro Alonso, and Karin Mora
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 89–95, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, 2024
Anca Anghelea, Ewelina Dobrowolska, Gunnar Brandt, Martin Reinhardt, Miguel Mahecha, Tejas Morbagal Harish, and Stephan Meissl
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 13–18, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-13-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-13-2024, 2024
Mélanie Weynants, Chaonan Ji, Nora Linscheid, Ulrich Weber, Miguel D. Mahecha, and Fabian Gans
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-396, https://doi.org/10.5194/essd-2024-396, 2024
Preprint under review for ESSD
Short summary
Short summary
Climate extremes are intensifying. The impacts of heatwaves and droughts can be made worse when they happen at the same time. Dheed is a global database of dry and hot compound extreme events from 1950 to 2022. It can be combined with other data to study the impacts of those events on terrestrial ecosystems, specific species or human societies. Dheed's analysis confirms that extremely dry and hot days have become more common on all continents in recent decades, especially in Europe and Africa.
Miguel D. Mahecha, Guido Kraemer, and Fabio Crameri
Earth Syst. Dynam., 15, 1153–1159, https://doi.org/10.5194/esd-15-1153-2024, https://doi.org/10.5194/esd-15-1153-2024, 2024
Short summary
Short summary
Our paper examines the visual representation of the planetary boundary concept, which helps convey Earth's capacity to sustain human life. We identify three issues: exaggerated impact sizes, confusing color patterns, and inaccessibility for colour-vision deficiency. These flaws can lead to overstating risks. We suggest improving these visual elements for more accurate and accessible information for decision-makers.
Francesco Martinuzzi, Miguel D. Mahecha, David Montero, Lazaro Alonso, and Karin Mora
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 89–95, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, 2024
David Montero, Miguel D. Mahecha, César Aybar, Clemens Mosig, and Sebastian Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 105–112, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, 2024
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024, https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
Short summary
We delved into the socio-economic impacts of the 2018–2022 drought in Germany. We derived a dataset covering the impacts of droughts in Germany between 2000 and 2022 on sectors such as agriculture and forestry based on newspaper articles. Notably, our study illustrated that the longer drought had a wider reach and more varied effects. We show that dealing with longer droughts requires different plans compared to shorter ones, and it is crucial to be ready for the challenges they bring.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billdesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Gharun Mana, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2024-165, https://doi.org/10.5194/egusphere-2024-165, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the earth surface to the atmosphere, or flux, is an important process to understand that impacts all of our lives. Here we outline a method to estimate global water and CO2 fluxes based on direct measurements from site around the world called FLUXCOM-X. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Short summary
Quantifying the imprint of large-scale atmospheric circulation dynamics and associated carbon cycle responses is key to improving our understanding of carbon cycle dynamics. Using a statistical model that relies on spatiotemporal sea level pressure as a proxy for large-scale atmospheric circulation, we quantify the fraction of interannual variability in atmospheric CO2 growth rate and the land CO2 sink that are driven by atmospheric circulation variability.
D. Montero, C. Aybar, M. D. Mahecha, and S. Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 301–306, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, 2022
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
Milan Flach, Alexander Brenning, Fabian Gans, Markus Reichstein, Sebastian Sippel, and Miguel D. Mahecha
Biogeosciences, 18, 39–53, https://doi.org/10.5194/bg-18-39-2021, https://doi.org/10.5194/bg-18-39-2021, 2021
Short summary
Short summary
Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. We study the impact of droughts and heatwaves on the uptake of CO2 of different vegetation types at the global scale. We find that agricultural areas are generally strongly affected. Forests instead are not particularly sensitive to the events under scrutiny. This implies different water management strategies of forests but also a lack of sensitivity to remote-sensing-derived vegetation activity.
Daniel E. Pabon-Moreno, Talie Musavi, Mirco Migliavacca, Markus Reichstein, Christine Römermann, and Miguel D. Mahecha
Biogeosciences, 17, 3991–4006, https://doi.org/10.5194/bg-17-3991-2020, https://doi.org/10.5194/bg-17-3991-2020, 2020
Short summary
Short summary
Ecosystem CO2 uptake changes in time depending on climate conditions. In this study, we analyze how different climate variables affect the timing when CO2 uptake is at a maximum (DOYGPPmax). We found that the joint effects of radiation, temperature, and vapor pressure deficit are the most relevant controlling factors of DOYGPPmax and that if they increase, DOYGPPmax will happen earlier. These results help us to better understand how CO2 uptake could be affected by climate change.
R. Sauzède, J. E. Johnson, H. Claustre, G. Camps-Valls, and A. B. Ruescas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 949–956, https://doi.org/10.5194/isprs-annals-V-2-2020-949-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-949-2020, 2020
Guido Kraemer, Gustau Camps-Valls, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 17, 2397–2424, https://doi.org/10.5194/bg-17-2397-2020, https://doi.org/10.5194/bg-17-2397-2020, 2020
Short summary
Short summary
To closely monitor the state of our planet, we require systems that can monitor
the observation of many different properties at the same time. We create
indicators that resemble the behavior of many different simultaneous
observations. We apply the method to create indicators representing the
Earth's biosphere. The indicators show a productivity gradient and a water
gradient. The resulting indicators can detect a large number of changes and
extremes in the Earth system.
Martin Jung, Christopher Schwalm, Mirco Migliavacca, Sophia Walther, Gustau Camps-Valls, Sujan Koirala, Peter Anthoni, Simon Besnard, Paul Bodesheim, Nuno Carvalhais, Frédéric Chevallier, Fabian Gans, Daniel S. Goll, Vanessa Haverd, Philipp Köhler, Kazuhito Ichii, Atul K. Jain, Junzhi Liu, Danica Lombardozzi, Julia E. M. S. Nabel, Jacob A. Nelson, Michael O'Sullivan, Martijn Pallandt, Dario Papale, Wouter Peters, Julia Pongratz, Christian Rödenbeck, Stephen Sitch, Gianluca Tramontana, Anthony Walker, Ulrich Weber, and Markus Reichstein
Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, https://doi.org/10.5194/bg-17-1343-2020, 2020
Short summary
Short summary
We test the approach of producing global gridded carbon fluxes based on combining machine learning with local measurements, remote sensing and climate data. We show that we can reproduce seasonal variations in carbon assimilated by plants via photosynthesis and in ecosystem net carbon balance. The ecosystem’s mean carbon balance and carbon flux trends require cautious interpretation. The analysis paves the way for future improvements of the data-driven assessment of carbon fluxes.
Christopher Krich, Jakob Runge, Diego G. Miralles, Mirco Migliavacca, Oscar Perez-Priego, Tarek El-Madany, Arnaud Carrara, and Miguel D. Mahecha
Biogeosciences, 17, 1033–1061, https://doi.org/10.5194/bg-17-1033-2020, https://doi.org/10.5194/bg-17-1033-2020, 2020
Short summary
Short summary
Causal inference promises new insight into biosphere–atmosphere interactions using time series only. To understand the behaviour of a specific method on such data, we used artificial and observation-based data. The observed structures are very interpretable and reveal certain ecosystem-specific behaviour, as only a few relevant links remain, in contrast to pure correlation techniques. Thus, causal inference allows to us gain well-constrained insights into processes and interactions.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Nora Linscheid, Lina M. Estupinan-Suarez, Alexander Brenning, Nuno Carvalhais, Felix Cremer, Fabian Gans, Anja Rammig, Markus Reichstein, Carlos A. Sierra, and Miguel D. Mahecha
Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, https://doi.org/10.5194/bg-17-945-2020, 2020
Short summary
Short summary
Vegetation typically responds to variation in temperature and rainfall within days. Yet seasonal changes in meteorological conditions, as well as decadal climate variability, additionally shape the state of ecosystems. It remains unclear how vegetation responds to climate variability on these different timescales. We find that the vegetation response to climate variability depends on the timescale considered. This scale dependency should be considered for modeling land–atmosphere interactions.
Milan Flach, Sebastian Sippel, Fabian Gans, Ana Bastos, Alexander Brenning, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 15, 6067–6085, https://doi.org/10.5194/bg-15-6067-2018, https://doi.org/10.5194/bg-15-6067-2018, 2018
Short summary
Short summary
Northern forests enhanced their productivity during and before the 2010 Russian mega heatwave. We scrutinize this issue with a novel type of multivariate extreme event detection approach. Forests compensate for 54 % of the carbon losses in agricultural ecosystems due to vulnerable conditions in spring and better water management in summer. The findings highlight the importance of forests in mitigating climate change, while not alleviating the consequences of extreme events for food security.
Paul Bodesheim, Martin Jung, Fabian Gans, Miguel D. Mahecha, and Markus Reichstein
Earth Syst. Sci. Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, https://doi.org/10.5194/essd-10-1327-2018, 2018
Short summary
Short summary
We provide continuous half-hourly carbon and energy fluxes for 2001 to 2014 at 0.5° spatial resolution, which allows for analyzing diurnal cycles globally. The data set contains four fluxes: gross primary production (GPP), net ecosystem exchange (NEE), latent heat (LE), and sensible heat (H). In addition, we provide a derived product that only contains monthly average diurnal cycles but which also enables us to study the important characteristics of subdaily patterns at a global scale.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
Geosci. Model Dev., 10, 3519–3545, https://doi.org/10.5194/gmd-10-3519-2017, https://doi.org/10.5194/gmd-10-3519-2017, 2017
Short summary
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
Sebastian Sippel, Jakob Zscheischler, Miguel D. Mahecha, Rene Orth, Markus Reichstein, Martha Vogel, and Sonia I. Seneviratne
Earth Syst. Dynam., 8, 387–403, https://doi.org/10.5194/esd-8-387-2017, https://doi.org/10.5194/esd-8-387-2017, 2017
Short summary
Short summary
The present study (1) evaluates land–atmosphere coupling in the CMIP5 multi-model ensemble against an ensemble of benchmarking datasets and (2) refines the model ensemble using a land–atmosphere coupling diagnostic as constraint. Our study demonstrates that a considerable fraction of coupled climate models overemphasize warm-season
moisture-limitedclimate regimes in midlatitude regions. This leads to biases in daily-scale temperature extremes, which are alleviated in a constrained ensemble.
Sebastian Sippel, Jakob Zscheischler, Martin Heimann, Holger Lange, Miguel D. Mahecha, Geert Jan van Oldenborgh, Friederike E. L. Otto, and Markus Reichstein
Hydrol. Earth Syst. Sci., 21, 441–458, https://doi.org/10.5194/hess-21-441-2017, https://doi.org/10.5194/hess-21-441-2017, 2017
Short summary
Short summary
The paper re-investigates the question whether observed precipitation extremes and annual totals have been increasing in the world's dry regions over the last 60 years. Despite recently postulated increasing trends, we demonstrate that large uncertainties prevail due to (1) the choice of dryness definition and (2) statistical data processing. In fact, we find only minor (and only some significant) increases if (1) dryness is based on aridity and (2) statistical artefacts are accounted for.
Gianluca Tramontana, Martin Jung, Christopher R. Schwalm, Kazuhito Ichii, Gustau Camps-Valls, Botond Ráduly, Markus Reichstein, M. Altaf Arain, Alessandro Cescatti, Gerard Kiely, Lutz Merbold, Penelope Serrano-Ortiz, Sven Sickert, Sebastian Wolf, and Dario Papale
Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, https://doi.org/10.5194/bg-13-4291-2016, 2016
Short summary
Short summary
We have evaluated 11 machine learning (ML) methods and two complementary drivers' setup to estimate the carbon dioxide (CO2) and energy exchanges between land ecosystems and atmosphere. Obtained results have shown high consistency among ML and high capability to estimate the spatial and seasonal variability of the target fluxes. The results were good for all the ecosystems, with limitations to the ones in the extreme environments (cold, hot) or less represented in the training data (tropics).
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
X. Wu, F. Babst, P. Ciais, D. Frank, M. Reichstein, M. Wattenbach, C. Zang, and M. D. Mahecha
Biogeosciences, 11, 3057–3068, https://doi.org/10.5194/bg-11-3057-2014, https://doi.org/10.5194/bg-11-3057-2014, 2014
J. Zscheischler, M. Reichstein, S. Harmeling, A. Rammig, E. Tomelleri, and M. D. Mahecha
Biogeosciences, 11, 2909–2924, https://doi.org/10.5194/bg-11-2909-2014, https://doi.org/10.5194/bg-11-2909-2014, 2014
J. v. Buttlar, J. Zscheischler, and M. D. Mahecha
Nonlin. Processes Geophys., 21, 203–215, https://doi.org/10.5194/npg-21-203-2014, https://doi.org/10.5194/npg-21-203-2014, 2014
Related subject area
Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Representation learning with unconditional denoising diffusion models for dynamical systems
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
The sampling method for optimal precursors of El Niño–Southern Oscillation events
A comparison of two causal methods in the context of climate analyses
A two-fold deep-learning strategy to correct and downscale winds over mountains
Downscaling of surface wind forecasts using convolutional neural networks
Data-driven methods to estimate the committor function in conceptual ocean models
Exploring meteorological droughts' spatial patterns across Europe through complex network theory
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Predicting sea surface temperatures with coupled reservoir computers
Using neural networks to improve simulations in the gray zone
The blessing of dimensionality for the analysis of climate data
Producing realistic climate data with generative adversarial networks
Identification of droughts and heatwaves in Germany with regional climate networks
Extracting statistically significant eddy signals from large Lagrangian datasets using wavelet ridge analysis, with application to the Gulf of Mexico
Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation
Applications of matrix factorization methods to climate data
Detecting dynamical anomalies in time series from different palaeoclimate proxy archives using windowed recurrence network analysis
Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024, https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Short summary
We train neural networks as denoising diffusion models for state generation in the Lorenz 1963 system and demonstrate that they learn an internal representation of the system. We make use of this learned representation and the pre-trained model in two downstream tasks: surrogate modelling and ensemble generation. For both tasks, the diffusion model can outperform other more common approaches. Thus, we see a potential of representation learning with diffusion models for dynamical systems.
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024, https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Short summary
The characterisation of abrupt transitions in palaeoclimate records allows understanding of millennial climate variability and potential tipping points in the context of current climate change. In our study an algorithmic method, the matrix profile, is employed to characterise abrupt warmings designated as Dansgaard–Oeschger (DO) events and to identify the most similar transitions in the palaeoclimate time series.
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024, https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
Short summary
During the last 2 years, tremendous progress has been made in global data-driven weather models trained on reanalysis data. In this study, the Pangu-Weather model is compared to several numerical weather prediction models with and without probabilistic post-processing for temperature and wind speed forecasting. The results confirm that global data-driven models are promising for operational weather forecasting and that post-processing can improve these forecasts considerably.
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024, https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
Short summary
Different from traditional deterministic optimization algorithms, we implement the sampling method to compute the conditional nonlinear optimal perturbations (CNOPs) in the realistic and predictive coupled ocean–atmosphere model, which reduces the first-order information to the zeroth-order one, avoiding the high-cost computation of the gradient. The numerical performance highlights the importance of stochastic optimization algorithms to compute CNOPs and capture initial optimal precursors.
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024, https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary
Short summary
Forecasting wind fields over mountains is of high importance for several applications and particularly for understanding how wind erodes and disperses snow. Forecasters rely on operational wind forecasts over mountains, which are currently only available on kilometric scales. These forecasts can also be affected by errors of diverse origins. Here we introduce a new strategy based on artificial intelligence to correct large-scale wind forecasts in mountains and increase their spatial resolution.
Florian Dupuy, Pierre Durand, and Thierry Hedde
Nonlin. Processes Geophys., 30, 553–570, https://doi.org/10.5194/npg-30-553-2023, https://doi.org/10.5194/npg-30-553-2023, 2023
Short summary
Short summary
Forecasting near-surface winds over complex terrain requires high-resolution numerical weather prediction models, which drastically increase the duration of simulations and hinder them in running on a routine basis. A faster alternative is statistical downscaling. We explore different ways of calculating near-surface wind speed and direction using artificial intelligence algorithms based on various convolutional neural networks in order to find the best approach for wind downscaling.
Valérian Jacques-Dumas, René M. van Westen, Freddy Bouchet, and Henk A. Dijkstra
Nonlin. Processes Geophys., 30, 195–216, https://doi.org/10.5194/npg-30-195-2023, https://doi.org/10.5194/npg-30-195-2023, 2023
Short summary
Short summary
Computing the probability of occurrence of rare events is relevant because of their high impact but also difficult due to the lack of data. Rare event algorithms are designed for that task, but their efficiency relies on a score function that is hard to compute. We compare four methods that compute this function from data and measure their performance to assess which one would be best suited to be applied to a climate model. We find neural networks to be most robust and flexible for this task.
Domenico Giaquinto, Warner Marzocchi, and Jürgen Kurths
Nonlin. Processes Geophys., 30, 167–181, https://doi.org/10.5194/npg-30-167-2023, https://doi.org/10.5194/npg-30-167-2023, 2023
Short summary
Short summary
Despite being among the most severe climate extremes, it is still challenging to assess droughts’ features for specific regions. In this paper we study meteorological droughts in Europe using concepts derived from climate network theory. By exploring the synchronization in droughts occurrences across the continent we unveil regional clusters which are individually examined to identify droughts’ geographical propagation and source–sink systems, which could potentially support droughts’ forecast.
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022, https://doi.org/10.5194/npg-29-301-2022, 2022
Short summary
Short summary
In this study, we successfully built and evaluated machine learning models for predicting water level dynamics as a proxy for compound flooding hazards in a data-scarce delta. The issues that we tackled here are data scarcity and low computational resources for building flood forecasting models. The proposed approach is suitable for use by local water management agencies in developing countries that encounter these issues.
Benjamin Walleshauser and Erik Bollt
Nonlin. Processes Geophys., 29, 255–264, https://doi.org/10.5194/npg-29-255-2022, https://doi.org/10.5194/npg-29-255-2022, 2022
Short summary
Short summary
As sea surface temperature (SST) is vital for understanding the greater climate of the Earth and is also an important variable in weather prediction, we propose a model that effectively capitalizes on the reduced complexity of machine learning models while still being able to efficiently predict over a large spatial domain. We find that it is proficient at predicting the SST at specific locations as well as over the greater domain of the Earth’s oceans.
Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, and George Craig
Nonlin. Processes Geophys., 29, 171–181, https://doi.org/10.5194/npg-29-171-2022, https://doi.org/10.5194/npg-29-171-2022, 2022
Short summary
Short summary
Our regional numerical weather prediction models run at kilometer-scale resolutions. Processes that occur at smaller scales not yet resolved contribute significantly to the atmospheric flow. We use a neural network (NN) to represent the unresolved part of physical process such as cumulus clouds. We test this approach on a simplified, yet representative, 1D model and find that the NN corrections vastly improve the model forecast up to a couple of days.
Bo Christiansen
Nonlin. Processes Geophys., 28, 409–422, https://doi.org/10.5194/npg-28-409-2021, https://doi.org/10.5194/npg-28-409-2021, 2021
Short summary
Short summary
In geophysics we often need to analyse large samples of high-dimensional fields. Fortunately but counterintuitively, such high dimensionality can be a blessing, and we demonstrate how this allows simple analytical results to be derived. These results include estimates of correlations between sample members and how the sample mean depends on the sample size. We show that the properties of high dimensionality with success can be applied to climate fields, such as those from ensemble modelling.
Camille Besombes, Olivier Pannekoucke, Corentin Lapeyre, Benjamin Sanderson, and Olivier Thual
Nonlin. Processes Geophys., 28, 347–370, https://doi.org/10.5194/npg-28-347-2021, https://doi.org/10.5194/npg-28-347-2021, 2021
Short summary
Short summary
This paper investigates the potential of a type of deep generative neural network to produce realistic weather situations when trained from the climate of a general circulation model. The generator represents the climate in a compact latent space. It is able to reproduce many aspects of the targeted multivariate distribution. Some properties of our method open new perspectives such as the exploration of the extremes close to a given state or how to connect two realistic weather states.
Gerd Schädler and Marcus Breil
Nonlin. Processes Geophys., 28, 231–245, https://doi.org/10.5194/npg-28-231-2021, https://doi.org/10.5194/npg-28-231-2021, 2021
Short summary
Short summary
We used regional climate networks (RCNs) to identify past heatwaves and droughts in Germany. RCNs provide information for whole areas and can provide many details of extreme events. The RCNs were constructed on the grid of the E-OBS data set. Time series correlation was used to construct the networks. Network metrics were compared to standard extreme indices and differed considerably between normal and extreme years. The results show that RCNs can identify severe and moderate extremes.
Jonathan M. Lilly and Paula Pérez-Brunius
Nonlin. Processes Geophys., 28, 181–212, https://doi.org/10.5194/npg-28-181-2021, https://doi.org/10.5194/npg-28-181-2021, 2021
Short summary
Short summary
Long-lived eddies are an important part of the ocean circulation. Here a dataset for studying eddies in the Gulf of Mexico is created through the analysis of trajectories of drifting instruments. The method involves the identification of quasi-periodic signals, characteristic of particles trapped in eddies, from the displacement records, followed by the creation of a measure of statistical significance. It is expected that this dataset will be of use to other authors studying this region.
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys., 28, 61–91, https://doi.org/10.5194/npg-28-61-2021, https://doi.org/10.5194/npg-28-61-2021, 2021
Short summary
Short summary
An unprecedented amount of rainfall data is available nowadays, such as ensemble model output, weather radar estimates, and in situ observations from networks of both traditional and opportunistic sensors. Nevertheless, the exact amount of precipitation, to some extent, eludes our knowledge. The objective of our study is precipitation reconstruction through the combination of numerical model outputs with observations from multiple data sources.
Dylan Harries and Terence J. O'Kane
Nonlin. Processes Geophys., 27, 453–471, https://doi.org/10.5194/npg-27-453-2020, https://doi.org/10.5194/npg-27-453-2020, 2020
Short summary
Short summary
Different dimension reduction methods may produce profoundly different low-dimensional representations of multiscale systems. We perform a set of case studies to investigate these differences. When a clear scale separation is present, similar bases are obtained using all methods, but when this is not the case some methods may produce representations that are poorly suited for describing features of interest, highlighting the importance of a careful choice of method when designing analyses.
Jaqueline Lekscha and Reik V. Donner
Nonlin. Processes Geophys., 27, 261–275, https://doi.org/10.5194/npg-27-261-2020, https://doi.org/10.5194/npg-27-261-2020, 2020
Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis
Nonlin. Processes Geophys., 27, 23–34, https://doi.org/10.5194/npg-27-23-2020, https://doi.org/10.5194/npg-27-23-2020, 2020
Short summary
Short summary
Statistical post-processing aims to increase the predictive skill of probabilistic ensemble weather forecasts by learning the statistical relation between historical pairs of observations and ensemble forecasts within a given training data set. This study compares four different training schemes and shows that including multiple years of data in the training set typically yields a more stable post-processing while it loses the ability to quickly adjust to temporal changes in the underlying data.
Cited articles
Aicher, C., Foti, N. J., and Fox, E. B.: Adaptively truncating backpropagation through time to control gradient bias, in: Uncertainty in Artificial Intelligence, PMLR, 799–808, http://proceedings.mlr.press/v115/aicher20a/aicher20a.pdf (last access: 4 November 2024), 2020. a
Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: a practical guide to measurement and data analysis, Springer Science & Business Media, https://doi.org/10.1007/978-94-007-2351-1, 2012. a
Bandt, C. and Pompe, B.: Permutation entropy: a natural complexity measure for time series, Phys. Rev. Lett., 88, 174102, https://doi.org/10.1103/PhysRevLett.88.174102, 2002. a
Barnes, L. R., Schultz, D. M., Gruntfest, E. C., Hayden, M. H., and Benight, C. C.: Corrigendum: False alarm rate or false alarm ratio?, Weather Forecast., 24, 1452–1454, 2009. a
Bastos, A., Sippel, S., Frank, D., Mahecha, M. D., Zaehle, S., Zscheischler, J., and Reichstein, M.: A joint framework for studying compound ecoclimatic events, Nat. Rev. Earth Environ., 4, 333–350, 2023. a
Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies with gradient descent is difficult, IEEE T. Neural Network., 5, 157–166, 1994. a
Benson, V., Robin, C., Requena-Mesa, C., Alonso, L., Carvalhais, N., Cortés, J., Gao, Z., Linscheid, N., Weynants, M., and Reichstein, M.: Multi-modal learning for geospatial vegetation forecasting, in: Conference on Computer Vision and Pattern Recognition, 16–22 June 2024, Seattle, Washington, United States, https://doi.org/10.1109/CVPR52733.2024.02625, 2024. a, b
Besnard, S., Carvalhais, N., Arain, M. A., Black, A., Brede, B., Buchmann, N., Chen, J., Clevers, J. G. W., Dutrieux, L. P., Gans, F., Herold, M., Jung, M., Kosugi, Y., Knohl, A., Law, B. E., Paul-Limoges, E., Lohila, A. Merbold, L., Roupsard, O., Valentini, R., Wolf, S., Zhang, X., and Reichstein, M.: Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests, PloS one, 14, e0211510, https://doi.org/10.1371/journal.pone.0211510, 2019. a
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A fresh approach to numerical computing, SIAM review, 59, 65–98, 2017. a
Bonavita, M., Schneider, R., Arcucci, R., Chantry, M., Chrust, M., Geer, A., Le Saux, B., and Vitolo, C.: 2022 ECMWF-ESA workshop report: current status, progress and opportunities in machine learning for Earth System observation and prediction, npj Climate and Atmospheric Science, 6, 87, https://doi.org/10.1038/s41612-023-00387-2, 2023. a
Bottou, L.: Stochastic gradient descent tricks, in: Neural Networks: Tricks of the Trade: Second Edition, Springer, 421–436, ISBN 978-3-642-35288-1, 2012. a
Buchhorn, M., Smets, B., Bertels, L., Roo, B. D., Lesiv, M., Tsendbazar, N.-E., Herold, M., and Fritz, S.: Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe, Zenodo [data set], https://doi.org/10.5281/zenodo.3939050, 2020. a
Camps-Valls, G., Campos-Taberner, M., Moreno-Martínez, Á., Walther, S., Duveiller, G., Cescatti, A., Mahecha, M. D., Muñoz-Marí, J., García-Haro, F. J., Guanter, L., Jung, M., Gamon, J. A., Reichstein, M., and Running, S. W.: A unified vegetation index for quantifying the terrestrial biosphere, Science Advances, 7, eabc7447, https://doi.org/10.1126/sciadv.abc7447, 2021a. a
Camps-Valls, G., Tuia, D., Zhu, X. X., and Reichstein, M.: Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences, John Wiley & Sons, ISBN 1119646146, 2021b. a
Canadell, J., Monteiro, P., Costa, M., Cotrim da Cunha, L., Cox, P., Eliseev, A., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global Carbon and other Biogeochemical Cycles and Feedbacks, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., p. 673–816, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.007, 2021. a
Cerina, L., Santambrogio, M. D., Franco, G., Gallicchio, C., and Micheli, A.: Efficient embedded machine learning applications using echo state networks, in: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 1299–1302, https://doi.org/10.23919/DATE48585.2020.9116334, 2020. a
Cerqueira, V., Torgo, L., and Mozetič, I.: Evaluating time series forecasting models: An empirical study on performance estimation methods, Machine Learning, 109, 1997–2028, 2020. a
Chattopadhyay, A., Hassanzadeh, P., and Subramanian, D.: Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network, Nonlin. Processes Geophys., 27, 373–389, https://doi.org/10.5194/npg-27-373-2020, 2020. a
Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., and Eklundh, L.: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter, Remote Sens. Environ., 91, 332–344, 2004. a
Chen, Z., Liu, H., Xu, C., Wu, X., Liang, B., Cao, J., and Chen, D.: Modeling vegetation greenness and its climate sensitivity with deep-learning technology, Ecol. Evol., 11, 7335–7345, 2021. a
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, October 2014, 1724–1734, https://doi.org/10.3115/v1/D14-1179, 2014. a, b
Chung, J., Gulcehre, C., Cho, K., and Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling, arXiv [preprint], https://doi.org/10.48550/arXiv.1412.3555, 2014. a
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J., and Jones, P. D.: An ensemble version of the E-OBS temperature and precipitation data sets, J. Geophys. Res.-Atmos., 123, 9391–9409, 2018 (data available at: https://www.ecad.eu/download/ensembles/download.php, last access: 1 June 2023). a, b
Danisch, S. and Krumbiegel, J.: Makie.jl: Flexible high-performance data visualization for Julia, Journal of Open Source Software, 6, 3349, https://doi.org/10.21105/joss.03349, 2021. a
Datseris, G.: DynamicalSystems.jl: A Julia software library for chaos and nonlinear dynamics, Journal of Open Source Software, 3, 598, https://doi.org/10.21105/joss.00598, 2018. a
De Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E., and Dent, D. L.: Analysis of monotonic greening and browning trends from global NDVI time-series, Remote Sens. Environ., 115, 692–702, 2011. a
De Jong, R., Verbesselt, J., Schaepman, M. E., and De Bruin, S.: Trend changes in global greening and browning: contribution of short-term trends to longer-term change, Glob. Change Biol., 18, 642–655, 2012. a
De Keersmaecker, W., van Rooijen, N., Lhermitte, S., Tits, L., Schaminée, J., Coppin, P., Honnay, O., and Somers, B.: Species-rich semi-natural grasslands have a higher resistance but a lower resilience than intensively managed agricultural grasslands in response to climate anomalies, J. Appl. Ecol., 53, 430–439, https://doi.org/10.1111/1365-2664.12595, 2016. a
Diaconu, C.-A., Saha, S., Günnemann, S., and Zhu, X. X.: Understanding the Role of Weather Data for Earth Surface Forecasting using a ConvLSTM-based Model, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Louisiana, United States, 12–24 June 2022, 1362–1371, https://openaccess.thecvf.com/content/CVPR2022W/EarthVision/html/Diaconu_Understanding_the_Role_of_Weather_Data_for_Earth_Surface_Forecasting_CVPRW_2022_paper.html (last access: 4 November 2024), 2022. a, b
Dijkstra, H. A.: Nonlinear climate dynamics, Cambridge University Press, ISBN 9781139034135, https://doi.org/10.1017/CBO9781139034135, 2013. a
Dobbertin, M., Wermelinger, B., Bigler, C., Bürgi, M., Carron, M., Forster, B., Gimmi, U., and Rigling, A.: Linking increasing drought stress to Scots pine mortality and bark beetle infestations, Sci. World J., 7, 231–239, 2007. a
Eggleton, T.: A short introduction to climate change, Cambridge University Press, ISBN 9781139524353, https://doi.org/10.1017/CBO9781139524353, 2012. a
Fang, K., Kifer, D., Lawson, K., Feng, D., and Shen, C.: The data synergy effects of time-series deep learning models in hydrology, Water Resour. Res., 58, e2021WR029583, https://doi.org/10.1029/2021WR029583, 2022. a
Farazmand, M. and Sapsis, T. P.: Extreme events: Mechanisms and prediction, Appl. Mech. Rev., 71, 050801, https://doi.org/10.1115/1.4042065, 2019. a
Fensham, R. and Holman, J.: Temporal and spatial patterns in drought-related tree dieback in Australian savanna, J. Appl. Ecol., 36, 1035–1050, 1999. a
Foley, J. A., Levis, S., Prentice, I. C., Pollard, D., and Thompson, S. L.: Coupling dynamic models of climate and vegetation, Glob. Change Biol., 4, 561–579, 1998. a
Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon, O., Qualls, L. M., Gupta, H. V., and Nearing, G. S.: Deep learning rainfall–runoff predictions of extreme events, Hydrol. Earth Syst. Sci., 26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022, 2022. a
Freire, P., Srivallapanondh, S., Spinnler, B., Napoli, A., Costa, N., Prilepsky, J. E., and Turitsyn, S. K.: Computational Complexity Optimization of Neural Network-Based Equalizers in Digital Signal Processing: A Comprehensive Approach, J. Lightwave Technol., 42, 4177–4201, https://doi.org/10.1109/JLT.2024.3386886, 2024. a
Freire, P. J., Osadchuk, Y., Spinnler, B., Napoli, A., Schairer, W., Costa, N., Prilepsky, J. E., and Turitsyn, S. K.: Performance versus complexity study of neural network equalizers in coherent optical systems, J. Lightwave Technol., 39, 6085–6096, 2021. a
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison, J. Climate, 19, 3337–3353, 2006. a
Funahashi, K.-i. and Nakamura, Y.: Approximation of dynamical systems by continuous time recurrent neural networks, Neural Networks, 6, 801–806, 1993. a
Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., and Hochreiter, S.: Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network, Hydrol. Earth Syst. Sci., 25, 2045–2062, https://doi.org/10.5194/hess-25-2045-2021, 2021. a
Gauthier, D. J., Fischer, I., and Röhm, A.: Learning unseen coexisting attractors, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32, 113107,
doi10.1063/5.0116784, 2022. a
doi10.1063/5.0116784, 2022. a
Gers, F. and Schmidhuber, J.: Recurrent nets that time and count, in: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, IEEE, Como, Italy, 27–27 July 2000, https://doi.org/10.1109/ijcnn.2000.861302, 2000. a
Ghazoul, J., Burivalova, Z., Garcia-Ulloa, J., and King, L. A.: Conceptualizing forest degradation, Trends Ecol. Evol., 30, 622–632, 2015. a
Glorot, X. and Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, edited by Teh, Y. W. and Titterington, M., vol. 9 of Proceedings of Machine Learning Research, PMLR, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, 249–256, https://proceedings.mlr.press/v9/glorot10a.html (last access: 25 October 2024), 2010. a
Grant, P. J.: Drought effect on high-altitude forests, Ruahine range, North Island, New Zealand, New Zeal. J. Bot., 22, 15–27, 1984. a
Grosse, I., Bernaola-Galván, P., Carpena, P., Román-Roldán, R., Oliver, J., and Stanley, H. E.: Analysis of symbolic sequences using the Jensen-Shannon divergence, Phys. Rev. E, 65, 041905, https://doi.org/10.1103/PhysRevE.65.041905, 2002. a
Haaga, K. A. and Datseris, G.: JuliaDynamics/ComplexityMeasures.jl: v2.7.2, Zenodo [software], https://doi.org/10.5281/zenodo.7862020, 2023. a
Hart, A., Hook, J., and Dawes, J.: Embedding and approximation theorems for echo state networks, Neural Networks, 128, 234–247, 2020. a
Hilker, T., Lyapustin, A. I., Tucker, C. J., Hall, F. G., Myneni, R. B., Wang, Y., Bi, J., Mendes de Moura, Y., and Sellers, P. J.: Vegetation dynamics and rainfall sensitivity of the Amazon, P. Natl. Acad. Sci. USA, 111, 16041–16046, 2014. a
Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions, Int. J. Uncertain. Fuzz., 6, 107–116, 1998. a
Hogan, R. J. and Mason, I. B.: Deterministic Forecasts of Binary Events, in: Forecast Verification: A Practitioner's Guide in Atmospheric Science, 2nd edn., https://doi.org/10.1002/9781119960003.ch3, 2011. a
Hyndman, R. J. and Koehler, A. B.: Another look at measures of forecast accuracy, International J. Forecasting, 22, 679–688, https://doi.org/10.1016/j.ijforecast.2006.03.001, 2006. a, b
Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note, Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, 148, 13, https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf (last access: 25 October 2024), 2001. a, b, c
Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., Schoennagel, T., and Turner, M. G.: Changing disturbance regimes, ecological memory, and forest resilience, Front. Ecol. Environ., 14, 369–378, 2016. a
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020. a
Kang, L., Di, L., Deng, M., Yu, E., and Xu, Y.: Forecasting vegetation index based on vegetation-meteorological factor interactions with artificial neural network, in: 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016, 1–6, https://doi.org/10.1109/Agro-Geoinformatics.2016.7577673, 2016. a
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv [preprint], https://doi.org/10.48550/arXiv.1412.6980, 2014. a
Kladny, K.-R., Milanta, M., Mraz, O., Hufkens, K., and Stocker, B. D.: Enhanced prediction of vegetation responses to extreme drought using deep learning and Earth observation data, Ecol. Inform., 80, 102474, https://doi.org/10.1016/j.ecoinf.2024.102474, 2024. a, b
Kraft, B., Jung, M., Körner, M., Requena Mesa, C., Cortés, J., and Reichstein, M.: Identifying dynamic memory effects on vegetation state using recurrent neural networks, Frontiers in Big Data, 2, 31, https://doi.org/10.3389/fdata.2019.00031, 2019. a, b, c
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, 2018. a
Kratzert, F., Gauch, M., Klotz, D., and Nearing, G.: HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin, Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, 2024. a, b
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005. a
Lamberti, P. W., Martin, M., Plastino, A., and Rosso, O.: Intensive entropic non-triviality measure, Physica A, 334, 119–131, 2004. a
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, 2015. a
Lellep, M., Prexl, J., Linkmann, M., and Eckhardt, B.: Using machine learning to predict extreme events in the Hénon map, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30, 013113, https://doi.org/10.1063/1.5121844, 2020. a
Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., Huntingford, C., Levy, P. E., Lomas, M. R., Majkut, J. Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L., Schuster, U. Sitch, S., Takahashi, T., Viovy, N., van der Werf, G. R., and Woodward, F. I.: Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2, 831–836, 2009. a
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Wright, R., Zaehle, S., and Zheng, B.: Global Carbon Budget 2018, Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, 2018. a
Liang, E., Shao, X., Kong, Z., and Lin, J.: The extreme drought in the 1920s and its effect on tree growth deduced from tree ring analysis: a case study in North China, Ann. For. Sci., 60, 145–152, 2003. a
Linscheid, N., Estupinan-Suarez, L. M., Brenning, A., Carvalhais, N., Cremer, F., Gans, F., Rammig, A., Reichstein, M., Sierra, C. A., and Mahecha, M. D.: Towards a global understanding of vegetation–climate dynamics at multiple timescales, Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, 2020. a
Liu, G., Liu, H., and Yin, Y.: Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes, Environ. Res. Lett., 8, 025009, https://doi.org/10.1088/1748-9326/8/2/025009, 2013. a
Lopez-Ruiz, R., Mancini, H. L., and Calbet, X.: A statistical measure of complexity, Phys. Lett. A, 209, 321–326, 1995. a
Lotsch, A., Friedl, M. A., Anderson, B. T., and Tucker, C. J.: Response of terrestrial ecosystems to recent Northern Hemispheric drought, Geophys. Res. Lett., 32, L06705, https://doi.org/10.1029/2004GL022043, 2005. a
Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R., and Ott, E.: Reservoir observers: Model-free inference of unmeasured variables in chaotic systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27, 041102, https://doi.org/10.1063/1.4979665, 2017. a
Maass, W., Natschläger, T., and Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Comput., 14, 2531–2560, 2002. a
Mahecha, M. D., Fürst, L. M., Gobron, N., and Lange, H.: Identifying multiple spatiotemporal patterns: A refined view on terrestrial photosynthetic activity, Pattern Recogn. Lett., 31, 2309–2317, 2010. a
Mahecha, M. D., Gans, F., Brandt, G., Christiansen, R., Cornell, S. E., Fomferra, N., Kraemer, G., Peters, J., Bodesheim, P., Camps-Valls, G., Donges, J. F., Dorigo, W., Estupinan-Suarez, L. M., Gutierrez-Velez, V. H., Gutwin, M., Jung, M., Londoño, M. C., Miralles, D. G., Papastefanou, P., and Reichstein, M.: Earth system data cubes unravel global multivariate dynamics, Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, 2020. a
Mahecha, M. D., Bastos, A., Bohn, F. J., Eisenhauer, N., Feilhauer, H., Hartmann, H., Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F. E. L., Peng, J., Quaas, J., Tegen, I., Weigelt, A., Wendisch, M., and Wirth, C.: Biodiversity loss and climate extremes – study the feedbacks, Nature, 612, 30–32, 2022. a
Mahecha, M. D., Bastos, A., Bohn, F. J., Eisenhauer, N., Feilhauer, H., Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F. E. L., Peng, J., Sippel, S., Tegen, I., Weigelt, A., Wendisch, M., Wirth, C., Al-Halbouni, D., Deneke, H., Doktor, D., Dunker, S., Duveiller, G., Ehrlich, A., Foth, A., García-García, A., Guerra, C. A., Guimarães-Steinicke, C., Hartmann, H., Henning, S., Herrmann, H., Hu, P., Ji, C., Kattenborn, T., Kolleck, N., Kretschmer, M., Kühn, I., Luttkus, M. L., Maahn, M., Mönks, M., Mora, K., Pöhlker, M., Reichstein, M., Rüger, N., Sánchez-Parra, B., Schäfer, M., Stratmann, F., Tesche, M., Wehner, B., Wieneke, S., Winkler, A. J., Wolf, S., Zaehle, S., Zscheischler, J., and Quaas, J.: Biodiversity and Climate Extremes: Known Interactions and Research Gaps, Earth's Future, 12, e2023EF003963, https://doi.org/10.1029/2023EF003963, 2024. a, b
Makridakis, S.: Accuracy measures: theoretical and practical concerns, Int. J. Forecasting, 9, 527–529, 1993. a
Martin, M., Plastino, A., and Rosso, O.: Generalized statistical complexity measures: Geometrical and analytical properties, Physica A, 369, 439–462, 2006. a
Martinuzzi, F.: rnn-ndvi, GitHub [code], https://github.com/MartinuzziFrancesco/rnn-ndvi (last access: 4 November 2024), 2023. a
Martinuzzi, F., Rackauckas, C., Abdelrehim, A., Mahecha, M. D., and Mora, K.: ReservoirComputing. jl: An Efficient and Modular Library for Reservoir Computing Models, J. Mach. Learn. Res. [code], http://jmlr.org/papers/v23/22-0611.html (last access: 4 November 2024), 2022. a
Meiyazhagan, J., Sudharsan, S., and Senthilvelan, M.: Model-free prediction of emergence of extreme events in a parametrically driven nonlinear dynamical system by deep learning, Eur. Phys. J. B, 94, 156, https://doi.org/10.1140/epjb/s10051-021-00167-y, 2021. a
Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., Hollmann, R., Lavergne, T., Laeng, A., de Leeuw, G., Mittaz, J., Poulsen, C., Povey, A. C., Reuter, M., Sathyendranath, S., Sandven, S., Sofieva, V. F., and Wagner, W.: Uncertainty information in climate data records from Earth observation, Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, 2017. a
Montero, D., Aybar, C., Mahecha, M. D., Martinuzzi, F., Söchting, M., and Wieneke, S.: A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research, Scientific Data, 10, 197, https://doi.org/10.1038/s41597-023-02096-0, 2023. a
Mora, K., Rzanny, M., Wäldchen, J., Feilhauer, H., Kattenborn, T., Kraemer, G., Mäder, P., Svidzinska, D., Wolf, S., and Mahecha, M. D.: Macrophenological dynamics from citizen science plant occurrence data, Methods in Ecol. Evol., 15, 1422–1437, https://doi.org/10.1111/2041-210X.14365, 2024. a, b
Nelson, J. A., Walther, S., Gans, F., Kraft, B., Weber, U., Novick, K., Buchmann, N., Migliavacca, M., Wohlfahrt, G., Šigut, L., Ibrom, A., Papale, D., Göckede, M., Duveiller, G., Knohl, A., Hörtnagl, L., Scott, R. L., Zhang, W., Hamdi, Z. M., Reichstein, M., Aranda-Barranco, S., Ardö, J., Op de Beeck, M., Billdesbach, D., Bowling, D., Bracho, R., Brümmer, C., Camps-Valls, G., Chen, S., Cleverly, J. R., Desai, A., Dong, G., El-Madany, T. S., Euskirchen, E. S., Feigenwinter, I., Galvagno, M., Gerosa, G., Gielen, B., Goded, I., Goslee, S., Gough, C. M., Heinesch, B., Ichii, K., Jackowicz-Korczynski, M. A., Klosterhalfen, A., Knox, S., Kobayashi, H., Kohonen, K.-M., Korkiakoski, M., Mammarella, I., Mana, G., Marzuoli, R., Matamala, R., Metzger, S., Montagnani, L., Nicolini, G., O'Halloran, T., Ourcival, J.-M., Peichl, M., Pendall, E., Ruiz Reverter, B., Roland, M., Sabbatini, S., Sachs, T., Schmidt, M., Schwalm, C. R., Shekhar, A., Silberstein, R., Silveira, M. L., Spano, D., Tagesson, T., Tramontana, G., Trotta, C., Turco, F., Vesala, T., Vincke, C., Vitale, D., Vivoni, E. R., Wang, Y., Woodgate, W., Yepez, E. A., Zhang, J., Zona, D., and Jung, M.: X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-165, 2024. a
Pammi, V. A., Clerc, M. G., Coulibaly, S., and Barbay, S.: Extreme Events Prediction from Nonlocal Partial Information in a Spatiotemporally Chaotic Microcavity Laser, Phys. Rev. Lett., 130, 223801, https://doi.org/10.1103/PhysRevLett.130.223801, 2023. a, b
Papagiannopoulou, C., Miralles, D. G., Decubber, S., Demuzere, M., Verhoest, N. E. C., Dorigo, W. A., and Waegeman, W.: A non-linear Granger-causality framework to investigate climate–vegetation dynamics, Geosci. Model Dev., 10, 1945–1960, https://doi.org/10.5194/gmd-10-1945-2017, 2017. a
Papale, D. and Valentini, R.: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization, Glob. Change Biol., 9, 525–535, 2003. a
Papale, D., Black, T. A., Carvalhais, N., Cescatti, A., Chen, J., Jung, M., Kiely, G., Lasslop, G., Mahecha, M. D., Margolis, H., Merbold, L., Montagnani, L., Moors, E., Olesen, J. E., Reichstein, M., Tramontana, G., van Gorsel, E., Wohlfahrt, G., and Ráduly, B.: Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks, J. Geophys. Res.-Biogeo., 120, 1941–1957, 2015. a
Pappas, C., Mahecha, M. D., Frank, D. C., Babst, F., and Koutsoyiannis, D.: Ecosystem functioning is enveloped by hydrometeorological variability, Nature Ecology & Evolution, 1, 1263–1270, 2017. a
Pascanu, R., Mikolov, T., and Bengio, Y.: On the difficulty of training recurrent neural networks, in: International conference on machine learning, Atlanta, GA, USA, 16–21 June 2013, Pmlr, 1310–1318, https://proceedings.mlr.press/v28/pascanu13.pdf (last access: 4 November 2024), 2013. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: Pytorch: An imperative style, high-performance deep learning library, GitHub [code], https://github.com/pytorch/pytorch (last access: 4 November 2024), 2019. a
Pathak, J., Lu, Z., Hunt, B. R., Girvan, M., and Ott, E.: Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27, 121102, https://doi.org/10.1063/1.5010300, 2017. a
Pathak, J., Hunt, B., Girvan, M., Lu, Z., and Ott, E.: Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach, Phys. Rev. Lett., 120, 024102, https://doi.org/10.1103/PhysRevLett.120.024102, 2018. a
Peng, Q., Li, X., Shen, R., He, B., Chen, X., Peng, Y., and Yuan, W.: How well can we predict vegetation growth through the coming growing season?, Science of Remote Sensing, 5, 100043, https://doi.org/10.1016/j.srs.2022.100043, 2022. a
Powers, D. M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.16061, 2020. a
Pyragas, V. and Pyragas, K.: Using reservoir computer to predict and prevent extreme events, Phys. Lett. A, 384, 126591, https://doi.org/10.1016/j.physleta.2020.126591, 2020. a
Ray, A., Chakraborty, T., and Ghosh, D.: Optimized ensemble deep learning framework for scalable forecasting of dynamics containing extreme events, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31, 111105, https://doi.org/10.1063/5.0074213, 2021. a
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D. Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500, 287–295, 2013. a
Reichstein, M., Besnard, S., Carvalhais, N., Gans, F., Jung, M., Kraft, B., and Mahecha, M.: Modelling landsurface time-series with recurrent neural nets, in: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018, 7640–7643, https://doi.org/10.1109/IGARSS.2018.8518007, 2018. a
Requena-Mesa, C., Benson, V., Reichstein, M., Runge, J., and Denzler, J.: EarthNet2021: A large-scale dataset and challenge for Earth surface forecasting as a guided video prediction task, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021, 1132–1142, https://doi.ieeecomputersociety.org/10.1109/CVPRW53098.2021.00124 (last access: 4 November 2024), 2021. a
Robin, C., Requena-Mesa, C., Benson, V., Alonso, L., Poehls, J., Carvalhais, N., and Reichstein, M.: Learning to forecast vegetation greenness at fine resolution over Africa with ConvLSTMs, arXiv [preprint], https://doi.org/10.48550/arXiv.2210.13648, 2022. a
Rosso, O. A. and Masoller, C.: Detecting and quantifying temporal correlations in stochastic resonance via information theory measures, Eur. Phys. J. B, 69, 37–43, 2009. a
Rosso, O. A., Larrondo, H., Martin, M. T., Plastino, A., and Fuentes, M. A.: Distinguishing noise from chaos, Phys. Rev. Lett., 99, 154102, https://doi.org/10.1103/PhysRevLett.99.154102, 2007. a, b, c
Rudy, S. H. and Sapsis, T. P.: Output-weighted and relative entropy loss functions for deep learning precursors of extreme events, Physica D, 443, 133570, https://doi.org/10.1016/j.physd.2022.133570, 2023. a
Savitzky, A. and Golay, M. J.: Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem., 36, 1627–1639, 1964. a
Scheepens, D. R., Schicker, I., Hlaváčková-Schindler, K., and Plant, C.: Adapting a deep convolutional RNN model with imbalanced regression loss for improved spatio-temporal forecasting of extreme wind speed events in the short to medium range, Geosci. Model Dev., 16, 251–270, https://doi.org/10.5194/gmd-16-251-2023, 2023. a
Schulz, L., Vollmer, J., Mahecha, M. D., and Mora, K.: Nonlinear spectral analysis extracts harmonics from land-atmosphere fluxes, arXiv [preprint], https://doi.org/10.48550/arXiv.2407.19237, 2024. a, b, c
Seneviratne, S., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S., Wehner, M., and Zhou, B.: Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2021. a
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-C.: Convolutional LSTM network: A machine learning approach for precipitation nowcasting, Adv. Neur. In., 28, 802–810, https://dl.acm.org/doi/10.5555/2969239.2969329 (last access: 4 November 2024), 2015. a
Sippel, S., Lange, H., Mahecha, M. D., Hauhs, M., Bodesheim, P., Kaminski, T., Gans, F., and Rosso, O. A.: Diagnosing the dynamics of observed and simulated ecosystem gross primary productivity with time causal information theory quantifiers, PloS one, 11, e0164960, https://doi.org/10.1371/journal.pone.0164960, 2016. a, b, c, d, e
Sippel, S., Reichstein, M., Ma, X., Mahecha, M. D., Lange, H., Flach, M., and Frank, D.: Drought, heat, and the carbon cycle: a review, Current Climate Change Reports, 4, 266–286, 2018. a
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob. Change Biol., 9, 161–185, 2003. a
Slayback, D. A., Pinzon, J. E., Los, S. O., and Tucker, C. J.: Northern hemisphere photosynthetic trends 1982–99, Glob. Change Biol., 9, 1–15, https://doi.org/10.1046/j.1365-2486.2003.00507.x, 2003. a
Srinivasan, P. A., Guastoni, L., Azizpour, H., Schlatter, P., and Vinuesa, R.: Predictions of turbulent shear flows using deep neural networks, Physical Review Fluids, 4, 054603, https://doi.org/10.1103/PhysRevFluids.4.054603, 2019. a
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1929–1958, 2014. a
Steinier, J., Termonia, Y., and Deltour, J.: Smoothing and differentiation of data by simplified least square procedure, Anal. Chem., 44, 1906–1909, 1972. a
Sun, C., Song, M., Cai, D., Zhang, B., Hong, S., and Li, H.: A systematic review of echo state networks from design to application, IEEE Transactions on Artificial Intelligence, 5, 23–37, 2022. a
Sutskever, I.: Training recurrent neural networks, PhD thesis, University of Toronto Toronto, ON, Canada, ISBN 9780499220660, 2013. a
Teskey, R., Wertin, T., Bauweraerts, I., Ameye, M., McGuire, M. A., and Steppe, K.: Responses of tree species to heat waves and extreme heat events, Plant Cell Environ., 38, 1699–1712, 2015. a
Tietz, M., Fan, T. J., Nouri, D., Bossan, B., and skorch Developers: skorch: A scikit-learn compatible neural network library that wraps PyTorch, Skorch [code], https://skorch.readthedocs.io/en/stable/ (last access: 25 October 2024), 2017. a
Van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fulé, P. Z., Harmon, M. E., Larson, A. J., Smith, J. M., Taylor, A. H., and Veblen, T. T.: Widespread increase of tree mortality rates in the western United States, Science, 323, 521–524, 2009. a
Verstraeten, D., Schrauwen, B., d'Haene, M., and Stroobandt, D.: An experimental unification of reservoir computing methods, Neural Networks, 20, 391–403, 2007. a
Vlachas, P., Pathak, J., Hunt, B., Sapsis, T., Girvan, M., Ott, E., and Koumoutsakos, P.: Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics, Neural Networks, 126, 191–217, https://doi.org/10.1016/j.neunet.2020.02.016, 2020. a
von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., Menzer, O., Arain, M. A., Buchmann, N., Cescatti, A., Gianelle, D., Kiely, G., Law, B. E., Magliulo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani, L., Oechel, W., Pavelka, M., Peichl, M., Rambal, S., Raschi, A., Scott, R. L., Vaccari, F. P., van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones, Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, 2018. a
Walleshauser, B. and Bollt, E.: Predicting sea surface temperatures with coupled reservoir computers, Nonlin. Processes Geophys., 29, 255–264, https://doi.org/10.5194/npg-29-255-2022, 2022. a
Walther, S., Besnard, S., Nelson, J. A., El-Madany, T. S., Migliavacca, M., Weber, U., Carvalhais, N., Ermida, S. L., Brümmer, C., Schrader, F., Prokushkin, A. S., Panov, A. V., and Jung, M.: Technical note: A view from space on global flux towers by MODIS and Landsat: the FluxnetEO data set, Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, 2022 (data available at: https://meta.icos-cp.eu/collections/tEAkpU6UduMMONrFyym5-tUW, last access: 25 October 2024). a, b, c
Werbos, P. J.: Generalization of backpropagation with application to a recurrent gas market model, Neural Networks, 1, 339–356, 1988. a
Werbos, P. J.: Backpropagation through time: what it does and how to do it, P. IEEE, 78, 1550–1560, 1990. a
Williams, R. J. and Zipser, D.: Gradient-based learning algorithms for recurrent, Backpropagation: Theory, Architectures, and Applications, 433, 17, https://gwern.net/doc/ai/nn/rnn/1995-williams.pdf (last access: 4 November 2024), 1995. a
Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E., and Tucker III, C. J.: Use of the Normalized Difference Vegetation Index (NDVI) to assess Land degradation at multiple scales: current status, future trends, and practical considerations, Springer, ISBN 978-3-319-24112-8, 2015. a
Zeng, N., Hales, K., and Neelin, J. D.: Nonlinear dynamics in a coupled vegetation–atmosphere system and implications for desert–forest gradient, J. Climate, 15, 3474–3487, 2002. a
Zhang, Q., Wang, H., Dong, J., Zhong, G., and Sun, X.: Prediction of sea surface temperature using long short-term memory, IEEE Geosci. Remote S., 14, 1745–1749, 2017. a
Zhang, Z., Xin, Q., and Li, W.: Machine Learning-Based Modeling of Vegetation Leaf Area Index and Gross Primary Productivity Across North America and Comparison With a Process-Based Model, J. Adv. Model. Earth Sy., 13, e2021MS002802, https://doi.org/10.1029/2021MS002802, 2021. a
Short summary
We investigated how machine learning can forecast extreme vegetation responses to weather. Examining four models, no single one stood out as the best, though "echo state networks" showed minor advantages. Our results indicate that while these tools are able to generally model vegetation states, they face challenges under extreme conditions. This underlines the potential of artificial intelligence in ecosystem modeling, also pinpointing areas that need further research.
We investigated how machine learning can forecast extreme vegetation responses to weather....