Articles | Volume 31, issue 3
https://doi.org/10.5194/npg-31-359-2024
https://doi.org/10.5194/npg-31-359-2024
Research article
 | 
13 Aug 2024
Research article |  | 13 Aug 2024

Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations

Jun-Ichi Yano

Related authors

Technical Note: General Formulation For the Distribution Problem: Prognostic Assumed PDF Approach Based on The Maximum–Entropy Principle and The Liouville Equation
Jun-Ichi Yano, Vince Larson, and Vaughan T. J. Phillips
EGUsphere, https://doi.org/10.5194/egusphere-2023-2278,https://doi.org/10.5194/egusphere-2023-2278, 2024
Short summary
Comment on “Review of experimental studies of secondary ice production” by Korolev and Leisner (2020)
Vaughan T. J. Phillips, Jun-Ichi Yano, Akash Deshmukh, and Deepak Waman
Atmos. Chem. Phys., 21, 11941–11953, https://doi.org/10.5194/acp-21-11941-2021,https://doi.org/10.5194/acp-21-11941-2021, 2021
Short summary
Sensitivities of the Madden–Julian oscillation forecasts to configurations of physics in the ECMWF global model
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778, https://doi.org/10.5194/acp-21-4759-2021,https://doi.org/10.5194/acp-21-4759-2021, 2021
Short summary
Basic convective element: bubble or plume? A historical review
J.-I. Yano
Atmos. Chem. Phys., 14, 7019–7030, https://doi.org/10.5194/acp-14-7019-2014,https://doi.org/10.5194/acp-14-7019-2014, 2014
Phenomenology of convection-parameterization closure
J.-I. Yano, M. Bister, Ž. Fuchs, L. Gerard, V. T. J. Phillips, S. Barkidija, and J.-M. Piriou
Atmos. Chem. Phys., 13, 4111–4131, https://doi.org/10.5194/acp-13-4111-2013,https://doi.org/10.5194/acp-13-4111-2013, 2013

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Dynamic–statistic combined ensemble prediction and impact factors of China's summer precipitation
Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng
Nonlin. Processes Geophys., 32, 117–130, https://doi.org/10.5194/npg-32-117-2025,https://doi.org/10.5194/npg-32-117-2025, 2025
Short summary
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
Multilevel Monte Carlo methods for ensemble variational data assimilation
Mayeul Destouches, Paul Mycek, Selime Gürol, Anthony T. Weaver, Serge Gratton, and Ehouarn Simon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3628,https://doi.org/10.5194/egusphere-2024-3628, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2084–2903, 2001. a, b
Anderson, J. L. and Anderson, S. L.: A Monte-Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999. a
Bechtold, P., Fravalo, C., and Pinty, J. P.: A model of marine boundary-layer cloudness for mesoscale applications, J. Atmos. Sci., 49, 1723–1744, 1992. a
Bechtold, P., Cuijpers, J. W. M., Mascart, P., and Trouilhet, P.: Modeling of trade-wind cumuli with a low-order turbulence model – Towards a unified description of Cu and Sc clouds in meteorological models, J. Atmos. Sci., 52, 455–463, 1995. a
Bony, S. and Emanuel, K. A.: A parameterization of the cloudness associated with cumulus convection: Evaluation using TOGA COARE data, J. Atmos. Sci., 58, 3158–3183, 2001. a
Download
Short summary
A methodology for directly predicting the time evolution of the assumed parameters for the distribution densities based on the Liouville equation, as proposed earlier, is extended to multidimensional cases and to cases in which the systems are constrained by integrals over a part of the variable range. The extended methodology is tested against a convective energy-cycle system as well as the Lorenz strange attractor.
Share