Articles | Volume 31, issue 2
https://doi.org/10.5194/npg-31-247-2024
https://doi.org/10.5194/npg-31-247-2024
Research article
 | Highlight paper
 | 
25 Jun 2024
Research article | Highlight paper |  | 25 Jun 2024

Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations

John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad

Related authors

TITAN automatic spatial quality control of meteorological in-situ observations
Line Båserud, Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, Louise Oram, and Trygve Aspelien
Adv. Sci. Res., 17, 153–163, https://doi.org/10.5194/asr-17-153-2020,https://doi.org/10.5194/asr-17-153-2020, 2020
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Characterisation of Dansgaard-Oeschger events in palaeoclimate time series using the Matrix Profile
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-13,https://doi.org/10.5194/npg-2024-13, 2024
Revised manuscript accepted for NPG
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024,https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary
Downscaling of surface wind forecasts using convolutional neural networks
Florian Dupuy, Pierre Durand, and Thierry Hedde
Nonlin. Processes Geophys., 30, 553–570, https://doi.org/10.5194/npg-30-553-2023,https://doi.org/10.5194/npg-30-553-2023, 2023
Short summary

Cited articles

Andrae, U., Frogner, I.-L., and Vignes, O.: A continuous EDA based ensemble in MetCoOp, Tech. Rep. 14, ALADIN-HIRLAM Newsletter, 2020. a, b
Ben-Bouallegue, Z., Clare, M. C. A., Magnusson, L., Gascon, E., Maier-Gerber, M., Janousek, M., Rodwell, M., Pinault, F., Dramsch, J. S., Lang, S. T. K., Raoult, B., Rabier, F., Chevallier, M., Sandu, I., Dueben, P., Chantry, M., and Pappenberger, F.: The rise of data-driven weather forecasting, arXiv [preprint], https://doi.org/10.48550/arXiv.2307.10128, 2023. a, b, c
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. Roy. Stat. Soc. B, 57, 289–300, 1995. a
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tao, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023. a, b, c
Bremnes, J. B.: Ensemble Postprocessing Using Quantile Function Regression Based on Neural Networks and Bernstein Polynomials, Mon. Weather Rev., 148, 403–414, https://doi.org/10.1175/MWR-D-19-0227.1, 2020. a, b, c
Download
Executive editor
This is a timely paper given the recent rise in data-driven and AI-based weather forecasting. It offers two key contributions. First, the paper provides (potentially the first, but at least one of the first) comparisons of AI-based and physics-based weather forecasting models based on station data (rather than the commonly used comparisons based on gridded ERA5 data). And second, the paper assesses and quantifies the effect of statistical post-processing on forecasts from AI-based weather models, which may also be the first of its kind.
Short summary
During the last 2 years, tremendous progress has been made in global data-driven weather models trained on reanalysis data. In this study, the Pangu-Weather model is compared to several numerical weather prediction models with and without probabilistic post-processing for temperature and wind speed forecasting. The results confirm that global data-driven models are promising for operational weather forecasting and that post-processing can improve these forecasts considerably.