Articles | Volume 30, issue 3
https://doi.org/10.5194/npg-30-289-2023
https://doi.org/10.5194/npg-30-289-2023
NPG Letters
 | 
21 Jul 2023
NPG Letters |  | 21 Jul 2023

Using orthogonal vectors to improve the ensemble space of the ensemble Kalman filter and its effect on data assimilation and forecasting

Yung-Yun Cheng, Shu-Chih Yang, Zhe-Hui Lin, and Yung-An Lee

Related authors

Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024,https://doi.org/10.5194/amt-17-3605-2024, 2024
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary
Evolution of small-scale turbulence at large Richardson numbers
Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh
Nonlin. Processes Geophys., 31, 219–227, https://doi.org/10.5194/npg-31-219-2024,https://doi.org/10.5194/npg-31-219-2024, 2024
Short summary
Inferring flow energy, space and time scales: freely-drifting vs fixed point observations
Aurelien Luigi Serge Ponte, Lachlan Astfalck, Matthew Rayson, Andrew Zulberti, and Nicole Jones
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-10,https://doi.org/10.5194/npg-2024-10, 2024
Revised manuscript accepted for NPG
Short summary

Cited articles

Bocquet, M. and Carrassi, A.: Four-dimensional ensemble variational data assimilation and the unstable subspace, Tellus A, 69, 1304504, https://doi.org/10.1080/16000870.2017.1304504, 2017. 
Carrassi, A., Trevisan, A., Descamps, L., Talagrand, O., and Uboldi, F.: Controlling instabilities along a 3DVar analysis cycle by assimilating in the unstable subspace: a comparison with the EnKF, Nonlin. Processes Geophys., 15, 503–521, https://doi.org/10.5194/npg-15-503-2008, 2008. 
Chang, S., Penny, G., and Yang, S.-C.: Hybrid Gain Data Assimilation using Variational Corrections in the Subspace Orthogonal to the Ensemble, Mon. Weather Rev., 148, 2331–2350, https://doi.org/10.1175/MWR-D-19-0128.1, 2020.  
Enomoto, T., Yamane, S., and Ohfuchi, W.: Simple sensitivity using ensemble forecasts, J. Meteorol. Soc. Jpn., 93, 199–213, https://doi.org/10.2151/jmsj.2015-011, 2015. 
Hamill, T. M. and Snyder, C.: A Hybrid Ensemble Kalman Filter–3D Variational Analysis Scheme, Mon. Weather Rev., 128, 2905–2919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2, 2000. 
Download
Short summary
In the ensemble Kalman filter, the ensemble space may not fully capture the forecast errors due to the limited ensemble size and systematic model errors, which affect the accuracy of analysis and prediction. This study proposes a new algorithm to use cost-free pseudomembers to expand the ensemble space effectively and improve analysis accuracy during the analysis step, without increasing the ensemble size during forecasting.