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Abstract. The space spanned by the background ensemble provides a basis for correcting forecast errors in the
ensemble Kalman filter. However, the ensemble space may not fully capture the forecast errors due to the limited
ensemble size and systematic model errors, which affect the assimilation performance. This study proposes a
new algorithm to generate pseudomembers to properly expand the ensemble space during the analysis step. The
pseudomembers adopt vectors orthogonal to the original ensemble and are included in the ensemble using the
centered spherical simplex ensemble method. The new algorithm is investigated with a six-member ensemble
Kalman filter implemented in the 40-variable Lorenz model. Our results suggest that the ensemble singular
vector, the ensemble mean vector, and their orthogonal components can serve as effective pseudomembers for
improving the analysis accuracy, especially when the background has large errors.

1 Introduction

The ensemble Kalman filter (EnKF) has the great advan-
tage of using flow-dependent background error covariance
(BEC) and has been widely applied to state estimation in
geophysics. The BEC is estimated by the background ensem-
ble, and its characteristic is crucial since it determines how
the observations are spread out to correct the model state.
The space spanned by the background ensemble members
(the ensemble space) is expected to capture the dynamically
growing errors, and the ensemble space provides a basis for
corrections.

However, the use of a finite ensemble size can cause the
underestimation of background error variance, and the back-
ground error correlation is less optimally represented due to
the sampling error. Therefore, the growing errors may not be
well captured, and corrections from the EnKF are less opti-
mal. Bocquet and Carrassi (2017) indicated that the stability
of the EnKF relies on the subspace spanned by the ensem-

ble members that represent the unstable–neutral subspace.
In other words, maintaining the ensemble space is important
for the EnKF performance. Strategies such as additive co-
variance inflation (Whitaker et al., 2008) or hybrid methods
(Hamill and Snyder, 2000) are commonly used to increase
the dimensionality of the ensemble. These methods expand
the overall ensemble space but are operated empirically with-
out a particular direction.

Previous studies have suggested that vectors stimulate the
growing modes can improve the dimensionality of the en-
semble space and the performance of the EnKF. For example,
Carrassi et al. (2008) used bred vectors as the direction of the
analysis increment to update the analysis states in an unstable
area. Yang et al. (2015) used a two-sided method to apply the
initial ensemble singular vectors (IESVs) as additive inflation
to correct the fastest-growing errors in a quasi-geostrophic
model. Chang et al. (2020), under the framework of a hybrid-
gain data assimilation framework (Penny, 2014), used part
of the variational information orthogonal to the EnKF anal-
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ysis perturbation to correct the EnKF means. These stud-
ies emphasize the importance of generating additional effec-
tive correction. Inspired by these works, this study proposes
generating pseudoensemble members to increase the ensem-
ble space to better capture forecast errors without increasing
the computational cost. We investigate whether the use of
pseudomembers could improve the analysis and forecast and
which type of pseudomember is most effective in this regard.

This paper is organized as follows. Section 2 introduces
the generation of pseudomembers. Section 3 presents the im-
pact of using pseudomembers for EnKF analysis. Section 4
provides the summary and discussion of this work.

2 Methodology and experimental design

2.1 General setup

This study conducts a series of Observation Simulation Sys-
tem Experiments (OSSEs) with the local ensemble trans-
form Kalman filter (LETKF; Hunt et al., 2007) implemented
in the 40-variable Lorenz-96 model (Lorenz, 1996; Lorenz
and Emanuel, 1998) (see Appendix A for the detailed proce-
dure). The standard set of experiments performs six-member
LETKF every 30 steps with observations available every two
grid points. Table 1 lists the details of the experiments and
assimilation configurations.

Before performing data assimilation, a new vector is
included as the extra ensemble member. The traditional
double-sized method (Toth and Kalnay, 1993) requires an
even number of included members and can lead to ill-
conditioned problems during EnKF computation. Therefore,
we adopt the centered spherical simplex ensemble (CSSE;
Wang et al., 2004) method, which can add any number of
members without modifying the ensemble mean and spread.
More importantly, the CSSE method avoids ill-conditioned
problems.

2.2 Deriving the vectors for pseudomembers

An added member is referred to as a pseudomember given
that it is generated at the analysis time and is not used during
the forecast stage. Two types of vectors are used for generat-
ing pseudomembers, including the initial ensemble singular
vector (IESV) and ensemble mean vector (EMV). Given a set
of ensemble forecasts, IESV finds fast-growing perturbations
within a period by linearly combining the ensemble pertur-
bations (Enomoto et al., 2015; Yang et al., 2015). In ensem-
ble data assimilation, the EMV is used to define the ensem-
ble perturbations (as the deviation) and is not accounted for
in the degrees of freedom, although the perturbations evolve
upon the mean state. However, it is likely that the forecast er-
rors carry a component with the structure of the mean, such
as the large-scale pattern, and will not be represented in the
ensemble perturbations.

Figure 1. The framework of the increased-size EnKF system.

With the generated vector, we further use its component
orthogonal to the ensemble space added as the pseudomem-
ber for EnKF computation. We first apply singular value de-
composition (SVD) to find the orthogonal vectors to repre-
sent the space spanned by the ensemble members. Second,
we use Eqs. (1) and (2) to obtain the orthogonal compo-
nent of the generated vector (orthogonal IESV1 or orthog-
onal EMV).

vfinal proj =

K−1∑
i=1

(ṽ · vi)
|vi |

2 vi (1)

vorth = normalize(ṽ− vfinal proj), (2)

where ṽ is the normalized generated vector, vi is the ith or-
thogonal vector of the ensemble space, vfinal proj is the total
projection of the generated vector at all the orthogonal vec-
tors of the ensemble space, and vorth is the orthogonal com-
ponent of the generated vector. Finally, the orthogonal com-
ponent of the generated vector is taken as the new ensemble
perturbation for expanding the ensemble space.

The orthogonal vector is rescaled to have the amplitude of
the background ensemble spread. Different experiments are
designed. The control experiment (CNTL) conducts standard
LETKF assimilation with six members and is taken as the
baseline. We conduct four experiments with the added pseu-
domembers. The first two experiments use the global IESV1
and EMV, and the last one adds two orthogonal vectors from
the IESV1 and EMV.

2.3 Setup of the increased-size EnKF system

Figure 1 shows the flow chart of our experiments. With the
K-member background ensemble, M-member pseudovec-
tors are generated. With CSSE, the ensemble size becomes
(K +M), and the LETKF analysis is performed with the
new ensemble. We conducted our experiments with offline
and online frameworks. The offline framework, in which the
LETKF analysis is not cycled, is used to investigate how the
ensemble space varies after adding the pseudovector and to
understand the benefits of the increased-size EnKF system by
clean comparisons. The background ensemble is provided by
the background ensemble of the CNTL at each analysis step.
In contrast, the analysis is cycled in the online experimental
framework to evaluate the accumulated feedback from the
increased-size EnKF system. However, K members need to
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Table 1. Lists of experiments and their corresponding configurations. The experiments with pseudomembers use the same settings as the
standard LETKF, denoted with CNTL in each set of experiments.

DA setup Observation LETKF parameters

Interval Inflation Number Error Ens. Truncation loc. Localization Pseudovector
(steps) variance size (◦) (◦)

CNTL 30 1.8 20 1.0 6 45 12.5 N
Orth_IESV1 1.7 6+ 1 IESV1
Orth_EMV 1.8 6+ 1 EMV
Orth_EMV+Orth_IESV1 30 1.9 20 1.0 6+ 2 EMV and IESV1

CNTL_OERR2 1.7 2.0 6 N
Orth_IESV_OERR2 1.7 2.0 6+ 1 IESV1
Orth_EMV_OERR2 1.7 2.0 6+ 1 EMV

CNTL_OBS10 1.0 10 6 N
Orth_IESV_OBS10 1.4 6+ 1 IESV1
Orth_EMV_OBS10 1.4 6+ 1 EMV

CNTL_short 10 1.4 20 1.0 6 45 12.5 N
Orth_IESV_short 1.5 6+ 1 IESV1
Orth_EMV_short 1.4 6+ 1 EMV

CNTL_long 50 1.7 20 1.0 6 45 12.5 N
Orth_IESV_long 1.8 6+ 1 IESV1
Orth_EMV_long 1.7 6+ 1 EMV

M20_CNTL 30 1.4 20 1.0 20 90 25 N
M20_Orth_IESV1 1.4 20+ 1 IESV1
M20_Orth_EMV 1.5 20+ 1 EMV
M20_Orth_IESV1-5 1.8 20+ 5 First 5 IESVs
M20_Orth_IESV1-10 1.7 20+ 10 First 10 IESVs
M20_Orth_IESV1-15 1.9 20+15 First 15 IESV10s

M7_LETKF 30 1.8 20 1.0 7 45 12.5 N

M25_LETKF 30 1.4 20 1.0 25 108 27 N

M30_LETKF 30 1.1 20 1.0 30 144 36 N

be selected from the new (K +M) members so that the fol-
lowing ensemble forecast is done without the need for extra
computational costs. To do so, we remove the last M mem-
bers with Eq. (3) to keep the ensemble mean and the ensem-
ble spread the same as when using the (K +M) members.

vnew
i = v̄i |(K+M)+

(
1
K

K+M∑
j=K+1

v′j + v′i

)(
σK+M

σK

)
i = 1,2. . .K, (3)

where vnew
i is the new ith member, v̄i |(K+M) is the mean of

the (K+M) members, v′i is the ith member perturbation, and
σK+M and σK represent the ensemble spread of the (K+M)

andK members, respectively. In Eq. (3), 1
K

K+M∑
j=K+1

v′j is used

to ensure that the sum of the new perturbations of the first K
members is equal to zero (Appendix B).

3 Results

This subsection illustrates how including the pseudomember
modifies the space spanned by ensemble members. The re-
sults are obtained from the offline setting, in which the or-
thogonal vector is directly included in the background en-
semble of the standard LETKF experiment (CNTL) with-
out cycling the impact. In this study, the orthogonal vector
is computed and added globally and can modify the BEC
whose structure determines the analysis correction. Here,
we focus on the local maximum forecast error (LME) area,
which is defined as a local area spanning seven grids and has
the largest forecast error at its center.

The characteristics of the ensemble space in the LME area
are represented by the eigenspectrum of the local ensemble
perturbation. Figure 2 shows the percentage of eigenvalues
averaged for 550 DA cycles in the LME area. The ensemble
space of CNTL (black) has five nonzero eigenvalues with six
members. The newly added orthogonal vector successfully
provides an independent mode in the ensemble space. With
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Figure 2. The mean eigenvalue percentage (y axis) of the control
run (black), the orthogonal IESV1 (orange), the orthogonal EMV
(green), and the eight-member experiments (blue) in each eigen-
mode (x axis). The calculation is done using the ensemble pertur-
bation in the local area spanning seven grids and centered at the grid
with the maximum forecast error.

two orthogonal vectors, the eight-member (Fig. 2, blue) ex-
periment (Orth_EMV+Orth_IESV1) can increase two inde-
pendent modes, so the ensemble space is expanded into seven
modes.

The expansion of the ensemble space can further modify
the analysis correction. This can be illustrated by the pro-
jection of forecast errors onto the orthogonal vectors of the
new ensemble space and the reduction in the analysis errors
with the additional orthogonal vector in the LME area. The
calculation of the projection is similar to Eq. (2), except ṽ

is replaced with the error of the background ensemble mean,
and the amplitude of vfinal proj is calculated at each analysis
cycle in each experiment. We compare how well the modi-
fication of the ensemble space can help to capture the error
of the background ensemble mean. The projection of CNTL
decreases when the LETKF performs poorly in reducing the
background error (black line in Fig. 3b vs. Fig. 3a). This also
confirms that LETKF assimilation is less successful when the
ensemble cannot capture the forecast error well. All experi-
ments with the additional orthogonal vector successfully in-
crease the projection and provide a more effective correction
to reduce the error (Fig. 3c), especially at the analysis times
when the CNTL analysis errors are larger than the back-
ground errors (highlighted by the dashed red boxes in Fig. 3).
Furthermore, Orth_EMV+Orth_IESV1 has the best perfor-
mance in capturing forecast errors and reducing analysis er-
rors. Note that the projection of the forecast errors only il-
lustrates how well the ensemble space encompasses the fore-
cast errors. It should be noted that the forecast errors in the
LME area, spanning seven grids, can be fully represented by
seven orthogonal vectors (Orth_EMV+Orth_IESV1), but
the background errors may not be completely removed due

Table 2. The mean and standard deviation (SD) of the analysis
RMSE of 10 experiments using the standard configuration. Each ex-
periment is initialized with a different random seed. RMSE is only
computed for the analysis times when the CNTL analysis RMSE is
2 standard deviations larger than the mean CNTL analysis RMSE.
The number in the brackets indicates the improvement rate with re-
spective to the CNTL RMSE.

Mean SD

CNTL 3.781 0.207
IESV 2.011 (46.7 %) 0.168
Orth_IESV1 2.048 (45.7 %) 0.235
EMV 1.949 (48.4 %) 0.210
Orth_EMV 1.919 (49.1 %) 0.181

to issues such as the underrepresentation of background er-
ror variance. Nevertheless, the offline experiments confirm
the potential of adding the orthogonal vector to provide more
effective corrections, and the improvement is highly flow de-
pendent.

Figure 4 sorts the projection of the CNTL background en-
semble on the background error according to the CNTL anal-
ysis RMSE and the projection of the added orthogonal vec-
tor on the forecast error residual. The forecast error residual
is the unexplained forecast error after removing the projec-
tion of the original background ensemble from the original
forecast error. All calculations are performed on the whole
domain. First, a large CNTL analysis RMSE corresponds to
the low projection of the original background ensemble on
forecast errors (i.e., blue dots with large RMSEs). In general,
the larger the CTRL RMSE is, the higher the orthogonal vec-
tor capturing the residual error. Compared to the orthogonal
IESV1, the orthogonal EMV projects more onto the forecast
error residual at most analysis times. Therefore, the orthog-
onal EMV is more useful to increase the ensemble space to
reduce the analysis errors in this example.

We further compare the results of the online experiments,
in which the impact of using the additional pseudovector is
cycled during the analysis step and further feedbacks into
the next background ensemble through analysis cycling. We
evaluate the analysis error based on the RMSE of the analysis
ensemble mean, and the experiments with the standard con-
figuration are repeated 10 times with different initial random
seeds to show the statistical robustness. Based on Fig. 3, Ta-
ble 2 focuses on the analysis cycles, whose analysis RMSE
values in the CNTL are 2 standard deviations larger than the
mean CNTL RMSE. This highlights the effect of adding the
new vectors in LETKF assimilation when the original back-
ground ensemble is less capable of reducing forecast errors.
With 10 randomly initialized standard experiments, adding
the IESV1 or EMV as the pseudovector is always effective
in improving the CNTL analysis. When the CTRL has large
analysis errors, both the IESV1 and EMV can have a mean
improvement rate larger than 46 %. This indicates that the
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Figure 3. Time series of (a) the background (dashed blue line) and analysis (red) RMSEs, (b) the projection on the background error, and
(c) the RMSE differences between experiments using pseudomembers and CNTL (negative indicates improvement).

Figure 4. Scatter plots of the projection on the background error (shading) according to the control analysis RMSE (x axis) and the projection
of the added pseudomember on the forecast errors residual: (a) orthogonal IESV1 and (b) orthogonal EMV experiments.
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Table 3. RMSE of different experiments.

Total DA cycles (550 cycles) Large analysis errors (about 25 cycles)

Background Analysis Analysis 30-step forecast

CNTL 2.1847 1.6571 3.5685 3.9456
Orth_IESV1 2.1359 1.5859 (4.30 %) 1.9096 (46.49 %) 2.5432 (35.54 %)
Orth_EMV 2.0895 1.5262 (7.90 %) 1.7621 (50.62 %) 2.3585 (40.22 %)

CNTL_2 2.6451 2.0730 3.6482 3.3842
Orth_IESV_2 2.6430 2.0521 (1 %) 2.6177 (28.25 %) 3.1114 (8.06 %)
Orth_EMV_2 2.5630 1.9981 (3.61 %) 2.5392 (30.40 %) 2.9690 (12.27 %)

CNTL_OBS10 4.0475 4.4914 4.6066 4.1115
Orth_IESV_OBS10 3.8944 4.1480 (7.65 %) 3.0303 (34.22 %) 3.3529 (18.45 %)
Orth_EMV_OBS10 3.7956 3.9999 (10.94 %) 3.5619 (22.68 %) 3.6218 (11.91 %)

CNTL_short 0.7903 0.6713 1.1369 1.3288
Orth_IESV_short 0.7269 0.6169 (8.10 %) 0.8473 (25.47 %) 0.9950 (25.12 %)
Orth_EMV_short 0.7101 0.6012 (10.44 %) 0.8796 (22.63 %) 1.0477 (21.15 %)

CNTL_long 3.3472 2.8679 4.6489 3.6933
Orth_IESV_long 3.3102 2.8104 (2.00 %) 3.0725 (33.90 %) 3.3123 (10.32 %)
Orth_EMV_long 3.2621 2.7292 (4.84 %) 3.3590 (27.75 %) 3.4358 (6.97 %)

CNTL_M20 1.6483 1.0799 2.4594 2.7106
M20_Orth_IESV1 1.5959 1.0482 (2.94 %) 1.5810 (35.72 %) 2.1618 (20.25 %)
M20_Orth_EMV 1.6034 1.0571 (2.11 %) 1.8175 (26.10 %) 2.2292 (17.76 %)
M20_Orth_EMV+ IESV1-4 1.6509 1.0714 (0.79 %) 1.4492 (41.08 %) 1.9708 (27.30 %)
M20_Orth_IESV1-5 1.6519 1.0797 (0.02 %) 1.4978 (39.10 %) 1.9740 (27.17 %)
M20_Orth_IESV1-10 1.5540 1.0431 (3.41 %) 1.3430 (45.39 %) 1.7390 (35.84 %)
M20_Orth_IESV1-15 1.5013 0.9752 (9.70 %) 1.2637 (48.62 %) 1.7363 (35.94 %)

additional correction is beneficial for correcting the grow-
ing error and thus results in positive feedback. On average,
the Orth_EMV shows a larger mean improvement than the
EMV. It should be noted that adding the Orth_IESV1 always
has a better performance than CNTL and sometimes than the
IESV1. However, the Orth_IEVS1 may overly expand the
subgrowing direction of the ensemble space, and the over-
correction results in a poorer performance than the IESV1
experiments. Therefore, the Orth_IESV1 has a smaller im-
provement rate than the IESV on average, and the standard
deviation of RMSE is much larger than that of the IESV1.

Table 3 summarizes the performance of the six-member
experiments with different assimilation configurations, and
experiments are conducted using one of the initial condi-
tions used in the CTRL experiments. Our results confirm
that adding the orthogonal vector is always beneficial in im-
proving the analysis accuracy under different assimilation
configurations, including larger observation error, sparse ob-
servations, and short or long assimilation intervals. We fur-
ther compare experiments using one or two orthogonal vec-
tors with the standard LETKF with seven members. While
using more members introduces more computation during
the ensemble forecast, experiments using the pseudovectors
for assimilation do not have extra computation for perform-
ing ensemble forecasting. Orth_EMV+Orth_IESV1 suc-

cessfully combines the advantages of using the orthogonal
IESV1 and the orthogonal EMV, and thus, it has better per-
formance than both single-pseudomember experiments, es-
pecially for groups with large analysis errors (Fig. 5b and c).
More importantly, Orth_EMV+Orth_IESV1 outperforms in
the group with mildly large analysis errors (Fig. 5b). How-
ever, when the analysis error grows to a certain range, the
seven-member standard LETKF (M7_LETKF) has the best
performance. Such an improvement with pseudomembers is
still valid and even more evident when the model is imperfect
(Fig. 5d–f), and Orth_EMV+Orth_IESV1 has a comparable
performance with M7_LETKF in general (Fig. 5d).

We further justify this method with a large ensemble size
(20 members) and investigate how many pseudomembers
can be useful. As shown in Table 3, the benefit of adding
pseudomembers based on IESVs increases as the number
of pseudomembers increases, particularly when the stan-
dard LETKF (M20_CNTL) has a large analysis RMSE. Us-
ing more than 10 IESVs can reduce the analysis RMSE
by 45 %, and the IESV1 (M20_Orth_IESV1) provides the
dominant effect. The improvement rate with 15 IESVs satu-
rates for the following 30-step forecast. Such a performance
(M20_Orth_IESV1-15) is better than the 25-member stan-
dard LETKF in general and even better than the 30-member
standard LETKF for the group of mildly large analysis er-
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Figure 5. Mean analysis and forecast RMSEs (y axis) during the 30-step integration (x axis) with different experiments. Panels (a–c) show
the perfect model experiments and (d, e) the imperfect model experiments. Panels (a) and (d) are averaged for all analysis cycles. Panels (b)
and (e) use the cycles when the CNTL analysis RMSE values are between 1 and 2 standard deviations larger than the mean RMSE. Panels (c)
and (f) use the cycles when the CNTL analysis RMSE values are 2 standard deviations larger than the mean RMSE. In the imperfect model
experiments, the F value in the governing equations of the Lorenz-96 model is changed from 8 to 7.8, and the inflation increases to 2.3.

Figure 6. The same as Fig. 5 except for different experiments. CNTL_M20, M25-mem_LETKF, and M30_LETKF use the standard LETKF
with 20, 25, and 30 members, respectively. M20_Orth_IESV1, M20_Orth_IESV1-5, M20_Orth_IESV1-10, and M20_Orth_IESV1-15 use
20 members and orthogonal components of IESVs as the pseudomembers.

https://doi.org/10.5194/npg-30-289-2023 Nonlin. Processes Geophys., 30, 289–297, 2023
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rors (Fig. 6). The forecast computation is only 66 % of
the 30-member LETKF. This also confirms that IESV-based
pseudomembers can effectively expand the ensemble space
to capture the growing forecast errors. We also note that
M20_Orth_EMV is less effective than M20_Orth_IESV1 in
the case of a large ensemble. The reason that the EMV as
the pseudomember is very effective with the small ensem-
ble is because the ensemble space spanned by the ensemble
perturbations cannot capture the background error well, and
the corrections for the background mean can be less opti-
mal. This limitation is more evident for the large-scale error
due to using a small localization. As a result, the structure
of the ensemble mean largely projects on the background
error (Fig. 4), and thus using the EMV as the pseudomem-
ber leads to a good performance. With a large ensemble size
and a large localization, the large-scale error in the back-
ground mean state is much reduced, and thus the EMV is
less effective in being used as the pseudomember. In com-
parison, the ensemble forecast can better capture the er-
ror evolution with more members, leading to a more robust
IESV1. Nevertheless, including the orthogonal EMV is still
more beneficial than using all pseudomembers with IESVs
(M20_Orth_EMV+ IESV1-4 vs. M20_Orth_IESV1-5).

4 Summary and conclusion

This study proposed a new idea of adding cost-free pseu-
domembers to expand the ensemble space and to improve the
performance of EnKF assimilation and forecast. Based on the
Lorenz-96 model, this idea is investigated with offline and
online frameworks. Two types of pseudoensemble members
are compared, including the global IESV1 and EMV. Both
are very effective in expanding the ensemble space in sen-
sitive areas, while the orthogonal EMV is most effective in
improving the analysis accuracy with a small ensemble size.
With a large ensemble size, the structure of the mean state is
less effective as the pseudomember, compared to IESV1. The
effective improvement with IESV1 indicates the importance
of maintaining the direction of growing error in the ensem-
ble space. We also confirm that adding more pseudomembers
with the EMV and IESVs can further improve the analysis
and forecast accuracy.

In the current operational ensemble DA system, additive
covariance inflation is commonly adopted to improve the
EnKF performance. However, how to choose additive infla-
tion is ad hoc and may even break the balance of the structure
of the original ensemble space and degrade the performance
of the data assimilation system. The newly proposed simple
idea could be a gentle alternative. In the future, we plan to
explore the feasibility of this idea in a real model, such as
using the orthogonal EMV as the pseudomember for ocean
ensemble data assimilation.

Appendix A: Introduction of the Lorenz-96 model

The Lorenz-96 model has been used to study the issue of
error growth and the probability of atmosphere and weather
forecasting (van Kekem et al., 2018). The governing equation
of the Lorenz-96 model is

dxj
dt
= xj−1

(
xj+1− xj−2

)
− xj +F j = 1, . . .,n, (A1)

where n is the dimension of the system, j is the index of the
analysis grids, and F is the external forcing term. dxj

dt can be
interpreted as some atmospheric quantity measured along the
same latitude of the earth (Lorenz, 2006).

Appendix B: Proof of Eq. (3)

This appendix proves that, with K members, the ensemble
mean and the ensemble spread adjusted by Eq. (3) are the
same as those derived with (K +M) members.

With v̄i |(K+M) denoting the ensemble mean of the (K +
M) ensemble members, we define vi as the ith ensemble
member and v′i as the perturbation deviated from v̄i |(K+M).

We select the first K members and define the new ith
member with Eq. (B1).

vnew
i = v̄i |(K+M)+

[
1
K

∑j=K+M

j=K+1
v′j + v′i

]
·

(
σK+M

σK

)
(B1)

In Eq. (B1), σK+M is the standard deviation of the (K +M)
members, and σK is the standard deviation of the first K
members.

K∑
i=1

vnew
i =K v̄i |(K+M)+

[∑j=K+M

j=K+1
v′j

+

∑i=K

i=1
v′i

]
·

(
σK+M

σK

)
(B2)

Since
[∑j=K+M

j=K+1 v′j +
∑i=K
i=1 v′i

]
=
∑i=K+M
i=1 v′i = 0, the

mean of the new K ensemble members is v̄i |(K+M). In ad-

dition,
(
σK+M
σK

)
is the scaling factor to ensure that the new

ensemble spread of the K member has the same ensemble
spread as the (K +M) members.
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