Articles | Volume 28, issue 1
https://doi.org/10.5194/npg-28-93-2021
https://doi.org/10.5194/npg-28-93-2021
Research article
 | 
08 Feb 2021
Research article |  | 08 Feb 2021

Behavior of the iterative ensemble-based variational method in nonlinear problems

Shin'ya Nakano

Related authors

Probabilistic modelling of substorm occurrences with an echo state network
Shin'ya Nakano, Ryuho Kataoka, Masahito Nosé, and Jesper W. Gjerloev
Ann. Geophys., 41, 529–539, https://doi.org/10.5194/angeo-41-529-2023,https://doi.org/10.5194/angeo-41-529-2023, 2023
Short summary
Echo state network model for analyzing solar-wind effects on the AU and AL indices
Shin'ya Nakano and Ryuho Kataoka
Ann. Geophys., 40, 11–22, https://doi.org/10.5194/angeo-40-11-2022,https://doi.org/10.5194/angeo-40-11-2022, 2022
Short summary
A sequential Bayesian approach for the estimation of the age–depth relationship of the Dome Fuji ice core
Shin'ya Nakano, Kazue Suzuki, Kenji Kawamura, Frédéric Parrenin, and Tomoyuki Higuchi
Nonlin. Processes Geophys., 23, 31–44, https://doi.org/10.5194/npg-23-31-2016,https://doi.org/10.5194/npg-23-31-2016, 2016
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary
Evolution of small-scale turbulence at large Richardson numbers
Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh
Nonlin. Processes Geophys., 31, 219–227, https://doi.org/10.5194/npg-31-219-2024,https://doi.org/10.5194/npg-31-219-2024, 2024
Short summary
How far can the statistical error estimation problem be closed by collocated data?
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398, https://doi.org/10.5194/npg-30-375-2023,https://doi.org/10.5194/npg-30-375-2023, 2023
Short summary

Cited articles

Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. Roy. Meteor. Soc., 143, 607–633, https://doi.org/10.1002/qj.2982, 2017. a
Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects, Mon. Weather Rev., 129, 420–436, 2001. a
Bocquet, M. and Sakov, P.: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems, Nonlin. Processes Geophys., 19, 383–399, https://doi.org/10.5194/npg-19-383-2012, 2012. a
Bocquet, M. and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20, 803–818, https://doi.org/10.5194/npg-20-803-2013, 2013. a, b, c, d
Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 140, 1521–1535, https://doi.org/10.1002/qj.2236, 2014. a, b, c, d
Download
Short summary
The ensemble-based variational method is a method for solving nonlinear data assimilation problems by using an ensemble of multiple simulation results. Although this method is derived based on a linear approximation, highly uncertain problems, in which system nonlinearity is significant, can also be solved by applying this method iteratively. This paper reformulated this iterative algorithm to analyze its behavior in high-dimensional nonlinear problems and discuss the convergence.