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Abstract. The behavior of the iterative ensemble-based data
assimilation algorithm is discussed. The ensemble-based
method for variational data assimilation problems, referred to
as the 4D ensemble variational method (4DEnVar), is a use-
ful tool for data assimilation problems. Although the 4DEn-
Var is derived based on a linear approximation, highly un-
certain problems, in which system nonlinearity is significant,
are solved by applying this method iteratively. However, the
ensemble-based methods basically seek the solution within a
lower-dimensional subspace spanned by the ensemble mem-
bers. It is not necessarily trivial how high-dimensional prob-
lems can be solved with the ensemble-based algorithm which
employs the lower-dimensional approximation based on the
ensemble. In the present study, an ensemble-based iterative
algorithm is reformulated to allow us to analyze its behav-
ior in high-dimensional nonlinear problems. The conditions
for monotonic convergence to a local maximum of the objec-
tive function are discussed in a high-dimensional context. It
is shown that the ensemble-based algorithm can solve high-
dimensional problems by distributing the ensemble in differ-
ent subspace at each iteration. The findings as the results of
the present study were also experimentally supported.

1 Introduction

The 4D ensemble variational method (4DEnVar; Lorenc,
2003; Liu et al., 2008) is a useful tool for practical data as-
similation. The 4DEnVar obtains the derivative of the objec-
tive function from the approximate Jacobian of a dynamical
system model, which is estimated by using the ensemble of
simulation results. In contrast with the adjoint method, the

4DEnVar does not require an adjoint code which is usually
time-consuming to develop. This ensemble method thus al-
lows us to treat the simulation code as a black box, and it can
easily be implemented.

The 4DEnVar algorithm is derived based on a low-
dimensional linear approximation of the high-dimensional
nonlinear system model. If the uncertainties in state variables
are small, then the solution could be found within the range
where a linear approximation is valid. However, geophysical
systems are often highly uncertain. If the scale of uncertainty
is much larger than the range of linearity, a linear approxima-
tion would not be justified. In atmospheric applications, un-
certainty can usually be reduced by taking sufficient spin-up
time. On the other hand, in some geophysical applications,
it is difficult to obtain a sufficiently long sequence of obser-
vations to allow spin-up. For example, in data assimilation
for the interior of the Earth, such as lithospheric plates (e.g.,
Kano et al., 2015) and the outer core (e.g., Sanchez et al.,
2019; Minami et al., 2020), the timescale of the system dy-
namics is so long that a sufficient length of an observation
sequence is not feasible. It is also difficult to use a long se-
quence of observations in the Earth’s magnetosphere where
the amount of observations is limited (e.g., Nakano et al.,
2008; Godinez et al., 2016). It is therefore an important is-
sue to consider large uncertainties which could deteriorate
the validity of the linear approximation.

Several studies have suggested that estimations in non-
linear problems can be improved by iterative algorithms in
which the ensemble is repeatedly updated in each iteration
(e.g., Gu and Oliver, 2007; Kalnay and Yang, 2010; Chen
and Oliver, 2012; Bocquet and Sakov, 2013, 2014; Raanes
et al., 2019). These iterative algorithms can be regarded as a
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variant of the 4DEnVar method, based on an approximation
of the Gauss–Newton method or the Levenberg–Marquardt
method. The Gauss–Newton and the Levenberg–Marquardt
methods are variants of the Newton–Raphson method for
solving nonlinear least squares problems by using the Jaco-
bian of a nonlinear function. Thus, when the Gauss–Newton
or the Levenberg–Marquardt framework is strictly applied
to data assimilation problems, the tangent linear of the sys-
tem model is required. Indeed, if the tangent linear of the
system model is obtained, 4D variational data assimilation
problems can be solved with the incremental formulation
(Courtier et al., 1994), which can be regarded as an instance
of the Gauss–Newton framework (Lawless et al., 2005). The
ensemble-based methods avoid computing the Jacobian of
a nonlinear system model by a linear approximation using
the ensemble. This ensemble-based approximation is justi-
fied if linearity can be assumed over the range where the
ensemble members are distributed. However, the ensemble-
based methods basically seek the solution within a lower-
dimensional subspace spanned by the ensemble members.
In many applications in atmospheric sciences, it has been
demonstrated that the localization of the covariance matrix
is useful for coping with high-dimensional problems (e.g.,
Buehner, 2005; Liu et al., 2009; Buehner et al., 2010; Yokota
et al., 2016). However, it has not necessarily been clarified
how general high-dimensional problems, in which the local-
ization of the covariance matrix might not be appropriate, can
be solved with the ensemble-based algorithm which employs
the lower-dimensional approximation based on the ensemble.

The present study aims to reformulate an ensemble-based
iterative algorithm in order to analyze its behavior in high-
dimensional nonlinear problems. We then explore the condi-
tions for achieving monotonic convergence to a local maxi-
mum of the objective function in a high-dimensional nonlin-
ear context. The monotonic convergence means that the dis-
crepancies between estimates and observations are reduced
in each iteration. It is ensured that the algorithm would attain
a satisfactory result in high-dimensional problems if the en-
semble is distributed in a different subspace at each iteration.
This study is originally motivated by data assimilation into a
geodynamo model to which the author contributed (Minami
et al., 2020). However, the present paper focuses on the iter-
ative variational data assimilation algorithm for general un-
certain problems in order to avoid the discussion on specific
physical processes of geodynamo. In Sect. 2, the formulation
of the variational data assimilation problem is described. In
Sect. 3, the basic idea of the ensemble variational method is
explained. The iterative version is introduced as an algorithm
for maximizing the log-likelihood function in Sect. 4, and the
behavior of the iterative algorithm is evaluated in Sect. 5. In
Sect. 6, a Bayesian extension is introduced. Section 7 ex-
perimentally verifies our findings. Finally, a discussion and
conclusions are presented in Sect. 8.

2 The 4D variational data assimilation (4DEnVar)

In the following, the system state at time tk is denoted as
xk , and the observation at tk is denoted as yk . We consider a
strong-constraint data assimilation problem where the evolu-
tion of state xk is given by the following:

xk = f k (xk−1) , (1)

and the relation between yk and xk is written in the following
form:

yk = hk (xk)+wk, (2)

where wk indicates the observation noise. Assuming that wk
obeys a Gaussian distribution with mean 0 and covariance
matrix Rk , then, in the following:

p(wk)∝ exp
[
−

1
2
wTk R−1

k wk

]
. (3)

The likelihood of xk given yk is as follows:

p
(
yk|xk

)
∝ exp

[
−

1
2

(
yk −hk (xk)

)T R−1
k

(
yk −hk (xk)

)]
. (4)

Since we assume a deterministic system as stated in Eq. (1),
hk(xk) can be written as a function of an initial value x0 as
follows:

hk (xk)= gk (x0) , (5)

where gk is the following composite function:

gk (x0)= hk ◦f k ◦f k−1 ◦ · · ·f 1 (x0) . (6)

The likelihood in Eq. (4) is then written as follows:

p
(
yk|x0

)
∝ exp

[
−

1
2

(
yk −gk (x0)

)T R−1
k

(
yk −gk (x0)

)]
. (7)

When the prior distribution of x0 is assumed to be Gaussian
with a mean x0,b and covariance matrix P0,b defined by the
following:

p(x0)∝ exp
[
−

1
2

(
x0− x0,b

)T P−1
0,b
(
x0− x0,b

)]
, (8)

the Bayesian posterior distribution of x0, given the whole
sequence of observations from t1 to tK , y1:K , can be obtained
as follows:

p(x0|y1:K)∝ exp
[
−

1
2

(
x0− x0,b

)T P−1
0,b
(
x0− x0,b

)
−

1
2

K∑
k=1

(
yk −gk (x0)

)T R−1
k

(
yk −gk (x0)

)]
. (9)

The maximum of the posterior can be found by maximizing
the following objective function:

J (x0)=−
1
2

(
x0− x0,b

)T P−1
0,b
(
x0− x0,b

)
−

1
2

K∑
k=1

(
yk −gk (x0)

)TR−1
k

(
yk −gk (x0)

)
. (10)
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3 Ensemble-based method

The maximization of the objective function J is convention-
ally performed by the adjoint method, which differentiates J
based on the adjoint matrix of the Jacobian of the function
f k in Eq. (1). For a practical high-dimensional simulation
model, however, it is an extremely laborious task to develop
the adjoint code which represents the adjoint matrix of the Ja-
cobian of the forward simulation model. The 4DEnVar is an
alternative method for obtaining an approximate maximum
of J without using the adjoint code. The 4DEnVar employs
an ensemble ofN simulation results

{
x
(1)
0:K , . . .,x

(N)
0:K

}
, where

x0:K indicates the whole sequence of the states from t0 to tK ;
that is, x0:K = (x

T
0 · · ·x

T
K)

T . The initial state of each ensem-
ble member x(i)0 is assumed to be sampled from the Gaus-
sian distribution N (x0;x0,b,P0,b). The objective function in
Eq. (10) is approximated by using this ensemble.

For convenience, we define the following matrix X0,b from
the initial states of ensemble members:

X0,b =
1
√
N

(
x
(1)
0 − x0,b · · · x

(N)
0 − x0,b

)
. (11)

Assuming that the optimal x0 can be written as a linear com-
bination of the ensemble members, we can write x0 in the
following form:

x0 = x0,b+X0,bw. (12)

This assumption means that x0 is within the subspace
spanned by the ensemble members. The quality of an es-
timate with the 4DEnVar can thus be poor if there are in-
sufficient ensemble members. In practical applications of the
4DEnVar, a localization technique is usually used to avoid
this problem (e.g., Buehner, 2005; Liu et al., 2009; Buehner
et al., 2010; Yokota et al., 2016). However, the present pa-
per does not consider localization because the focus here is
on the basic behavior of the 4DEnVar. If we assume that the
rank of X0,b is N(< dimx0) and approximate the inverse of
P0,b by the Moore–Penrose inverse matrix of X0,bXT0,b, the
first term of the right-hand side of Eq. (10) can be approxi-
mated as follows:

−
1
2

(
x0− x0,b

)T P−1
0,b
(
x0− x0,b

)
=−

1
2
wTXT0,bP

−1
0,bX0,bw ≈−

1
2
wTw. (13)

This corresponds to a low-rank approximation within the
subspace spanned by the ensemble members. The prior mean

x0,b is usually given by the ensemble mean of
{
x
(i)
0

}N
i=1

. In
such a case, it is necessary to ignore the subspace along the
vector 1= (1· · ·1)T to reach the approximation of Eq. (13).
The function gk(x0) is approximated based on the first-order
Taylor expansion as follows:

gk (x0)≈ gk
(
x0,b

)
+Gk

(
x0− x0,b

)
≈ gk

(
x0,b

)
+GkX0,bw, (14)

where Gk is the Jacobian of gk at x0,b. The matrix GkX0,b
in Eq. (14) is approximated as follows:

GkX0,b ≈
1
√
N

×

(
gk

(
x
(1)
0

)
−gk

(
x0,b

)
· · · gk

(
x
(N)
0

)
−gk

(
x0,b

))
. (15)

Defining the right-hand side of Eq. (15) as 0k , that is, in the
following:

0k =
1
√
N

×

(
gk

(
x
(1)
0

)
−gk

(
x0,b

)
· · · gk

(
x
(N)
0

)
−gk

(
x0,b

))
≈GkX0,b, (16)

we obtain a further approximation of the function gk(x0) in
Eq. (14) as follows:

gk (x0)≈ gk
(
x0,b

)
+0kw (17)

(e.g., Zupanski et al., 2008; Bannister, 2017). Using Eqs. (13)
and (17), the objective function in Eq. (10) can be approxi-
mated as a function of w as follows:

Ĵw(w)=−
1
2
wTw−

1
2

K∑
k=1

(
yk −gk

(
x0,b

)
−0kw

)
×R−1

k

(
yk −gk

(
x0,b

)
−0kw

)
, (18)

where we defined Ĵw(w)= J (x0,b+X0,bw).
The approximate objective function Ĵw is a quadratic func-

tion of w, and it no longer contains the Jacobian of the func-
tion gk . The maximization of Ĵw is thus much easier than that
of the original objective function in Eq. (10). The derivative
of Ĵw with respect to w becomes the following:

∇wĴw = w−

K∑
k=1

(
0Tk R−1

k

[
yk −gk

(
x0,b

)
−0kw

])
(19)

(Liu et al., 2008). The Hessian matrix of Ĵw is then obtained
as follows:

H
Ĵw
= I+

∑
k

[
0Tk R−1

k 0k

]
. (20)

We can thus immediately find the value of w when maximiz-
ing Ĵw as follows:

ŵ =

(
I+

∑
k

0Tk R−1
k 0k

)−1

×

∑
k

(
0Tk R−1

k

[
yk −gk

(
x0,b

)])
. (21)

Inserting ŵ into Eq. (12), we obtain an estimate of x0 as
follows:

x̂0 = x0,b+X0,bŵ. (22)
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This solution in Eq. (22) is similar to the ensemble Kalman
smoother (van Leeuwen and Evensen, 1996; Evensen and
van Leeuwen, 2000), although the whole sequence of obser-
vations is referred to in Eq. (21). Even if a large amount of
data are used, it would not seriously affect the computational
cost because the computation of the inverse matrix can be
conducted inN -dimensional space. This is also an advantage
of the ensemble-based method.

4 Iterative algorithm

Since Eqs. (21) and (22) do not require the Jacobian of the
function gk , it can be applied as a post-process – provided
that an ensemble of the simulation runs is prepared in ad-
vance. However, this solution, which maximizes the objec-
tive function in Eq. (18), relies on Eq. (15) which approx-
imates the matrix GkX0,b by using the ensemble. This ap-
proximation is based on the first-order approximation shown
in Eq. (14). Where x0 exhibits high uncertainty and ‖x0−

x0,b‖ can be large, this approximation appears to be invalid.
Therefore, it is not guaranteed that the estimate with Eq. (22)
provides the optimal x0 which maximizes the original log-
posterior density function in Eq. (10), even if we accept that
the solution is limited within the ensemble subspace.

Where the initially prepared ensemble is used, it is un-
likely that a better solution than Eq. (22) could be achieved.
We then consider an iterative algorithm which generates a
new ensemble based on the previous estimate in each itera-
tion. The algorithm introduced in the following is basically
the same as the method referred to as the iterative ensem-
ble Kalman filter (Bocquet and Sakov, 2013, 2014), but we
employ a formulation that allows evaluation of the behavior
and a slight extension. To derive an algorithm analogous to
that in the previous section, we at first consider the following
log-likelihood function:

J` (x0)=−
1
2

K∑
k=1

[
yk −gk (x0)

]TR−1 [yk −gk (x0)
]
, (23)

instead of the log-posterior density function in Eq. (10).
Maximization of the Bayesian-type objective function in
Eq. (10) will be discussed in Sect. 6.

In the following, we combine the vectors of the whole
time sequence from t1 to tK into one single vector; that is,
y = y1:K and g(x0)= g0:K(x0). The covariance matrices
R1, . . .,RK are also combined into one block diagonal ma-
trix R, which satisfies the following:

yTR−1y =

K∑
k=1

yTk R−1
k yk. (24)

Accordingly, the log-likelihood function of Eq. (23) is rewrit-
ten as follows:

J` (x0)=−
1
2

[
y−g (x0)

]TR−1 [y−g (x0)
]
. (25)

In our iterative algorithm, the mth step starts with an en-
semble of initial values

{
x
(1)
0,m−1, . . .,x

(N)
0,m−1

}
obtained in the

neighbor of the (m−1)th estimate x0,m−1. Typically, the en-
semble is generated so that the ensemble mean is equal to
x0,m−1; that is, in the following:

x0,m−1 =
1
N

N∑
i=1

x
(i)
0,m−1, (26)

although it is not necessary to satisfy this equation. A
simulation run initialized at x

(i)
0,m−1 yields g(x

(i)
0,m−1),

and we obtain the ensemble of the simulation results{
g(x

(1)
0,m−1), . . .,g(x

(N)
0,m−1)

}
. Defining the matrices as fol-

lows:

Xm−1 =
1
√
N

×

(
x
(1)
0,m−1− x0,m−1 · · · x

(N)
0,m−1− x0,m−1

)
, (27)

0m−1 =
1
√
N

×

(
g(x

(1)
0,m−1)−g

(
x0,m−1

)
· · · g

(
x
(N)
0,m−1

)
−g

(
x0,m−1

))
, (28)

we consider the following mth objective function:

J̌`,m
(
wm|x0,m−1

)
=−

σ 2
m

2
wTmwm−

1
2

[
y−g

(
x0,m−1

)
−0m−1wm

]T
×R−1 [y−g (x0,m−1

)
−0m−1wm

]
, (29)

where σm is an appropriately chosen parameter. This objec-
tive function J̌`,m is maximized when, in the following:

ŵm =
(
σ 2
mI+0Tm−1R−10m−1

)−1

×

(
0Tm−1R−1 [y−g (x0,m−1

)])
, (30)

and wm provides the mth estimate of x0,m as follows:

x0,m = x0,m−1+Xm−1wm. (31)

Unless converged, members of the next ensemble are gener-
ated in the neighbor of x0,m so that ‖x(i)0,m− x0,m‖

2 is small
for each i, and we proceed to the next iteration. By iterat-
ing the above procedures until convergence, the optimal x̂0
which maximizes J` is attained.

The form of J̌`,m in Eq. (29) looks similar to that of Ĵw in
Eq. (18). However, the meaning of the first term of Eq. (29)
is different from that of the first term of Eq. (18). The first
term of Eq. (18) corresponded to the Bayesian prior. On the
other hand, the first term of Eq. (29) is a penalty term to en-
sure monotonic convergence, as explained later. After itera-
tions until convergence, the contribution of this penalty term
would decay, and the log-likelihood function in Eq. (23) is
maximized in the end.
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We can consider various ways to obtain an ensemble satis-
fying Eq. (26). Bocquet and Sakov (2013) proposed obtain-
ing a matrix Xm as a scalar multiple of X0,b, as follows:

Xm = αmX0,b (αm ≥ 0), (32)

where X0,b is a matrix defined in Eq. (11). A new ensemble
for next iteration is generated to satisfy the following:

Xm =
1
√
N

(
x
(1)
0,m− x0,m · · · x

(N)
0,m− x0,m

)
. (33)

As discussed later, αm should be taken to be so small that a
linear approximation is valid over the range of the ensemble
dispersion. The value of αm can be fixed at a small value.
Otherwise, αm may be reduced gradually in each iteration so
that the spread of the ensemble eventually becomes small.
We can also shrink the ensemble by using a similar scheme
to the ensemble transform Kalman filter (Bishop et al., 2001;
Livings et al., 2008), which obtains Xm as outlined by Boc-
quet and Sakov (2012); that is, in the following:

Xm = Xm−1Tm, (34)

where Tm is the ensemble transform matrix given as follows:

Tm = Um(I+3m)−
1
2 UTm. (35)

In Eq. (35), I is the identity matrix and Um3mUTm is the
eigenvalue decomposition of the matrix σ−2

m 0Tm−1R−10m−1,
where Um is an orthogonal matrix consisting of the eigenvec-
tors, and the matrix 3m is a diagonal matrix of the eigenval-
ues.

If the ensemble is updated according to Eq. (32) or (34),
the estimate of x0 is constrained within the subspace spanned
by the initial ensemble members

{
x
(1)
0,0, . . .,x

(N)
0,0

}
. We can

avoid confining the ensemble within a subspace by randomly
generating ensemble members from a Gaussian distribution
with a mean x0,m and variance Qm as follows:

x
(i)
0,m ∼N

(
x0,m,Qm

)
, (i = 1, . . .,N). (36)

Although this method has a limitation when applying it to
Bayesian estimation, as explained later, it would be effective
if applicable.

The iterative algorithm is summarized in Algorithm 1. The
procedures in this iterative algorithm are similar to those in
the ensemble-based multiple data assimilation method (Em-
erick and Reynolds, 2012, 2013), which aims to obtain the
maximum of the Bayesian posterior function, especially if
the ensemble is updated with Eq. (34). The multiple data
assimilation method does not perform iterations until con-
vergence, but it performs iterations only a few times to esti-
mate the maximum of the posterior, although it can provide a
biased solution in nonlinear problems (Evensen, 2018). In
order to achieve the convergence to the maximum of the

Bayesian posterior in our framework, the objective function
in each iteration should be modified as discussed in Sect. 6.

5 Rationale of the algorithm

Equation (30) can be regarded as an approximation of the
Levenberg–Marquardt method (e.g., Nocedal and Wright,
2006) for maximizing the log-likelihood function in Eq. (23)
within the subspace spanned by

{
x
(1)
0,0, . . .,x

(N)
0,0

}
. In par-

ticular, if σ 2
m is zero, Eq. (30) can be regarded as an ap-

proximation of the Gauss–Newton method. Indeed, Bocquet
and Sakov (2013, 2014) derived a similar algorithm as an
approximation of the Levenberg–Marquardt method or the
Gauss–Newton method. However, the Levenberg–Marquardt
method basically requires the Jacobian of the function gk ,
Gm−1. Since the above iterative algorithm does not directly
use Gm−1, it would not be trivial to determine how the con-
vergence of this algorithm is achieved. This issue is explored
in this section.

We hereinafter assume that g(x0) is at least twice differ-
entiable. The Taylor expansion up to the second-order term
of J` becomes the following:

J` (x0)=−
1
2

[
y−g

(
x0,m−1

)]T R−1 [y−g (x0,m−1
)]

+
[
y−g

(
x0,m−1

)]T R−1Gm−1
(
x0− x0,m−1

)
−

1
2

(
x0− x0,m−1

)T
×GT

m−1R−1Gm−1
(
x0− x0,m−1

)
+

1
4

(
x0− x0,m−1

)T
×

[(
y−g

(
x0,m−1

))T R−1
(
∇

2g
)](

x0− x0,m−1
)

+O
(
‖x0− x0,m−1‖

3
)
, (37)

where Gm−1 is the Jacobian at x0,m−1, and
(
∇

2g
)

is a third-
order tensor which consists of the Hessian matrix of each
element of the vector-valued function g(x0). As in Eq. (12),
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we assume the following:

x0 = x0,m−1+Xm−1wm, (38)

where Xm−1 is obtained by Eq. (27) given the ensemble{
x
(1)
0,m−1, . . .,x

(N)
0,m−1

}
. We then have the following:

J`(x0)= J`
(
x0,m−1+Xm−1wm

)
=−

1
2

[
y−g

(
x0,m−1

)]TR−1 [y−g (x0,m−1
)]

+
[
y−g

(
x0,m−1

)]TR−1Gm−1Xm−1wm

−
1
2
wTmXTm−1GT

m−1R−1Gm−1Xm−1wm

+
1
4
wTmXTm−1

[(
y−g

(
x0,m−1

))TR−1
(
∇

2g
)]

×Xm−1wm+O
(
‖wm‖

3
)
. (39)

In practical cases, the Jacobian matrix Gm−1 is typically
unavailable. Ensemble variational methods thus employ the
first-order approximation in Eq. 15 for Gm−1Xm−1; that is,
in the following:

Gm−1Xm−1 ≈ 0m−1, (40)

where, in the following:

0m−1 =
1
√
N

×

(
g
(
x
(1)
0,m−1

)
−g

(
x0,m−1

)
· · · g

(
x
(N)
0,m−1

)
−g

(
x0,m−1

))
. (41)

To evaluate this approximation when x0 has a large uncer-
tainty, we consider the following expansion of g(x0) for each
ensemble member x(i)0 :

g
(
x
(i)
0

)
= g

(
x0,m−1

)
+Gm−1

(
x
(i)
0 − x0,m−1

)
+

1
2

(
x
(i)
0 − x0,m−1

)T (
∇

2g
)(
x
(i)
0 − x0,m−1

)
+O

(
‖x

(i)
0 − x0,m−1‖

3
)
. (42)

If we consider a vector 0m−1wm, it becomes the following:

0m−1wm=
1
√
N

N∑
i=1

w(i)Gm−1

(
x
(i)
0 − x0,m−1

)
+

1

2
√
N

N∑
i=1

w(i)
(
x
(i)
0 − x0,m−1

)T (
∇

2g
)

×

(
x
(i)
0 − x0,m−1

)
=Gm−1Xm−1wm

+
1

2
√
N

N∑
i=1

w(i)
[(
x
(i)
0 − x0,m−1

)T (
∇

2g
)

×

(
x
(i)
0 − x0,m−1

)
+O

(
‖x

(i)
0 − x0,m−1‖

3
)]
. (43)

If Gm−1Xm−1wm, which is contained in the first-order term
in Eq. (39), is approximated by 0m−1wm, then this means
that the second- and higher-order terms of the right-hand side
of Eq. (43) are neglected. Indeed, this can be justified if the
spread of the ensemble is taken to be small. In our iterative
scheme, the ensemble spread can be tuned freely. Even if the
scale of ‖x(i)0 − x0,m−1‖ is very small, any x0, which may
have a large uncertainty, can be represented by taking the
scale of ‖wm‖ to be large according to Eq. (38). The nonlin-
ear terms of the right-hand side of Eq. (43) are of the order
of ‖wm‖, while they are of the order of ‖x(i)0 − x0,m−1‖

2 or
higher order. Thus, if the spread of the ensemble is taken
to be small, the nonlinear terms of Eq. (43) would be sup-
pressed, and we obtain the following:

0m−1wm ≈Gm−1Xm−1wm. (44)

Consequently, we can apply the approximation in Eq. (40) to
Eq. (39). Defining a function J`,wm(wm) as follows:

J`,wm (wm)=−
1
2

[
y−g

(
x0,m−1

)]T R−1 [y−g (x0,m−1
)]

+
[
y−g

(
x0,m−1

)]T R−10m−1wm

−
1
2
wTm0

T
m−1R−10m−1wm

+
1
4
wTmXTm−1

[(
y−g

(
x0,m−1

))T R−1
(
∇

2g
)]

×Xm−1wm+O
(
‖wm‖

3
)
, (45)

J`,wm(wm) gives an approximation of J`(x0,m−1+Xm−1wm)

in Eq. (39) as follows:

J`
(
x0,m−1+Xm−1wm

)
≈ J`,wm (wm) . (46)

The fourth term on the right-hand side of Eq. (45) would
not necessarily be suppressed, even if the ensemble variance
were taken to be small, because it is of the order of ‖wm‖2

and of the order of ‖x(i)0 −x0,m−1‖
2. To control the effect of

this term, we introduce the idea of the minorize–maximize
algorithm (MM algorithm; Lange et al., 2000; Lange, 2016).
The MM algorithm is a class of iterative algorithms which
considers a surrogate function which minorizes the objec-
tive function φ(z) and maximizes the surrogate function.
Although the Levenberg–Marquardt method can also be re-
garded as an instance of the MM algorithm, the generic idea
of the MM algorithm gives striking insight into the behavior
of the algorithm.

At the mth step of the MM algorithm, the surrogate func-
tion, given the (m−1)th estimate zm−1, ψ(z0|zm−1), is cho-
sen to satisfy the following conditions:

ψ (z|zm−1)≤ φ(z), (47a)
ψ (zm−1|zm−1)= φ (zm−1) . (47b)

The mth estimate, zm, is obtained by maximizing the mth
surrogate function, ψ(z|zm−1). Since zm obviously satisfies
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the following:

φ (zm−1)= ψ (zm−1|zm−1)≤ ψ (zm|zm−1)≤ φ (zm) , (48)

it is guaranteed that the mth estimate is as good as or better
than the (m−1)th estimate. After iterations, zm converges to
a stationary point zs of the objective function φ(z) (Lange,
2016). If the Hessian matrix of φ(z) is negative definite in a
neighborhood of zs , the stationary point zs becomes a local
maximum (e.g., Nocedal and Wright, 2006). Therefore, the
estimate would monotonically converge to a local maximum
of φ(z) by repeating iterations if the following conditions are
met:

– the surrogate function ψ(z|zm) is twice differentiable
and satisfies Eqs. (47a) and (47b),

– and the Hessian of φ(z) is a negative definite in a neigh-
borhood of the stationary point zs .

Here we consider the following surrogate function J †
`,wm

:

J
†
`,wm

(
wm|x0,m−1

)
=−

σ 2
m

2
wTmwm

−
1
2

[
y−g

(
x0,m−1

)]TR−1 [y−g (x0,m−1
)]

+
[
y−g

(
x0,m−1

)]TR−10m−1wm

−
1
2
wTm0

T
m−1R−10m−1wm

=−
σ 2
m

2
wTmwm−

1
2

[
y−g

(
x0,m−1

)
−0m−1wm

]T
×R−1 [y−g (x0,m−1

)
−0m−1wm

]
, (49)

which is a similar treatment to Böhning and Lindsay (1988).
For a given 1, we can take σ 2

m so that the following inequal-
ity holds over ‖wm‖<1:

−
σ 2
m

2
wTmwm ≤

1
4
wTmXTm−1

×

[(
y−g

(
x0,m−1

))TR−1
(
∇

2g
)]

×Xm−1wm+O
(
‖wm‖

3
)
, (50)

where the equality holds if wm = 0. If σ 2
m is chosen so that

the inequality (50) is satisfied, J †
`,w satisfies the following:

J
†
`,wm

(
wm|x0,m−1

)
≤ J`,wm (wm)

≈ J`
(
x0,m−1+Xm−1wm

)
, (51)

J
†
`,wm

(
0|x0,m−1

)
= J`,wm(0)= J`

(
x0,m−1

)
. (52)

This means that J †
`,wm

can be used as a surrogate function
for maximizing J`,wm(wm) according to the MM algorithm.
Since Eq. (49) is the same as Eq. (29), the maximum of J †

`,wm

is achieved when wm = ŵm where ŵm is given by Eq. (30).
Obviously, ŵm satisfies the following inequality:

J
†
`,wm

(
0|x0,m−1

)
≤ J

†
`,wm

(
ŵm|x0,m−1

)
, (53)

and therefore, if the approximation in Eq. (40) is valid, then
we obtain the following result:

J`
(
x0,m−1

)
= J`,wm(0)≤ J`,wm

(
ŵm

)
≈ J`

(
x0,m−1+Xm−1ŵm

)
= J`

(
x0,m

)
, (54)

where x0,m is given by Eq. (31).
The above discussion is valid regardless of the choice of

the ensemble
{
x
(1)
0,m, . . .,x

(N)
0,m

}
in each iteration as far as the

approximation in Eq. (40) is applicable. This suggests that
we can use various ways to update the ensemble, including
Eq. (36) which does not confine the ensemble within a partic-
ular subspace. It should be noted that the equality of Eq. (53)
holds at a stationary point in the subspace spanned by the
ensemble members. If the update of the ensemble in each it-
eration is carried out with Eq. (32) or (34), then the ensemble
is confined within a particular subspace spanned by the initial
ensemble, and x0,m−1 would converge to a stationary point
in this subspace. According to Eq. (37), if the nonlinearity
of g is not severe when

(
∇

2g
)

is not dominant, the Hessian
of J` is negative definite in a region where ‖y−g(x0,m−1)‖

is small enough. This suggests that the iterative algorithm in
Sect. 4 would attain at least a local maximum of J` in the sub-
space for weakly nonlinear problems if Eq. (36) is applicable.
If the ensemble is updated according to Eq. (36), a stationary
point is sought in a different subspace in each iteration. If Qm

is full rank, J` would increase until a point which can be re-
garded as a stationary point in any N -dimensional subspace,
and x0,m−1 would thus converge to a local maximum in the
full vector space after infinite iterations.

Based on the foregoing, convergence to a local maximum
of the objective function J` can be achieved for weakly non-
linear systems if the ensemble variance is taken to be small
enough. If the ensemble with large spread is used, the esti-
mate can be biased due to the nonlinear terms in Eq. (43).
Hence, an ensemble with small spread would provide a sat-
isfactory result for weakly nonlinear systems where we can
assume the Hessian of J` is a negative definite over the re-
gion of interest. However, this iterative algorithm does not
necessarily guarantee convergence to the global maximum.
If there are multiple peaks in J`, it might be effectual to
start with an ensemble with a large spread to approach the
global maximum. An ensemble with a large spread would
grasp a large-scale structure of the objective function be-
cause the ensemble approximation of the Jacobian gives the
gradient averaged over the region where the ensemble mem-
bers are distributed under a certain assumption (Raanes et al.,
2019). Even if the spread is taken to be large at first, con-
vergence would eventually be achieved by reducing the en-
semble spread in each iteration, as described in the previous
section.
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Our formulation refers to the result of a simulation run ini-
tialized at the (m−1)th estimate x0,m−1 for obtaining themth
estimate in Eq. (31). On the other hand, in many studies, the
ensemble mean of simulation runs

{
g(x

(i)
0,m−1)

}
is used as a

substitute for g(x0,m−1). If the ensemble mean g(x(i)0,m−1) is
used, the ensemble in each iteration must be generated so as
to satisfy Eq. (26), which is not required in our formulation;
that is, the ensemble mean must be equal to the (m− 1)th
estimate x0,m−1. It should also be kept in mind that some
bias due to the nonlinear terms in Eq. (42) could be intro-
duced when the ensemble mean is used instead of g(x0,m−1).
However, this bias could be suppressed by taking the ensem-
ble spread to be small. Since the use of the ensemble mean
would save the computational cost of one simulation run for
each iteration, it might be a useful treatment for practical ap-
plications.

It is also important to appropriately choose the parameter
σ 2
m. A sufficiently large σ 2

m guarantees that the mth estimate
x0,m is better than the previous estimate x0,m−1, and hence,
convergence is stable. However, convergence speed will be
degraded with large σ 2

m because x0,m is strongly constrained
by the penalty weighted with σ 2

m. Although there is no defini-
tive way to determine this parameter, σ 2

m/2 should have a
similar scale to the right-hand side of Eq. (50); that is, if the
third- and higher-order terms are assumed to be negligible
then, in the following:

σ 2
m ∼ XTm−1

[(
y−g(x0,m−1)

)TR−1
(
∇

2g
)]

Xm−1. (55)

Since the right-hand side of Eq. (55) contains
(
∇

2g
)

which
comes from a nonlinear term of the function g, σ 2

m should
be taken larger as system nonlinearity is more severe. This
equation also suggests that σ 2

m should depend on the dis-
crepancy between observation y and the (m− 1)th predic-
tion g(x0,m−1). Although

(
∇

2g
)

is unknown in general,
‖y−g(x0,m−1)‖ could be used as a guide for determining
σ 2
m. The parameter σ 2

m should also be dependent on the vari-
ance of the ensemble. If an ensemble with a large spread is
used, σ 2

m should be set as large accordingly.

6 Bayesian form

The algorithm in Sect. 4 maximizes the log-likelihood func-
tion in Eq. (23). However, sometimes it would be required
that prior information is incorporated into the estimate in
a Bayesian manner. We thus consider the following log-
posterior density function as the objective function:

J (x0)=−
1
2

(
x0− x0,b

)T P−1
0,b
(
x0− x0,b

)
−

1
2

[
y−g (x0)

]TR−1 [y−g (x0)
]
, (56)

which is the same as Eq. (10), although the vectors of the
whole time sequence are combined into a single vector for

each y and g(x0) as in Eq. (23). Equation (56) is proportional
to the log-posterior distribution when p(x0) and p(y|x0) are
assumed to be Gaussian. The Taylor expansion of Eq. (56) is
as follows:

J (x0)=−
1
2

(
x0− x0,b

)T P−1
0,b
(
x0− x0,b

)
−

1
2

[
y−g

(
x0,m−1

)]T R−1 [y−g (x0,m−1
)]

+
[
y−g

(
x0,m−1

)]T R−1Gm−1
(
x0− x0,m−1

)
−

1
2

(
x0− x0,m−1

)T
×GT

m−1R−1Gm−1
(
x0− x0,m−1

)
+

1
4

(
x0− x0,m−1

)T
×

[(
y−g

(
x0,m−1

))T R−1
(
∇

2g
)](

x0− x0,m−1
)

+O
(
‖x0− x0,m−1‖

3
)
. (57)

Applying Eqs. (38) and (44), we obtain the following approx-
imate objective function:

Jwm(wm)=−
1
2

(
x0,m−1− x0,b +Xm−1wm

)T
×P−1

0,b
(
x0,m−1− x0,b +Xm−1wm

)
−

1
2

[
y−g

(
x0,m−1

)]T R−1 [y−g (x0,m−1
)]

+
[
y−g

(
x0,m−1

)]T R−10m−1wm

−
1
2
wTm0

T
m−1R−10m−1wm

+
1
4
wTmXTm−1

×

[(
y−g

(
x0,m−1

))T R−1
(
∇

2g
)]

Xm−1wm

+O
(
‖wm‖

3
)
. (58)

As per Eq. (50), we can take σ 2
m so that the fifth and sixth

terms on the right-hand side of Eq. (58) can be minorized
by a quadratic function −(σ 2

m/2)w
T
mwm, and we obtain the

following surrogate function which minorizes the function
Jwm as follows:
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J †
wm

(
wm|x0,m−1

)
=−

σ 2
m

2
wTmwm

−
1
2

(
x0,m−1− x0,b+Xm−1wm

)T
×P−1

0,b
(
x0,m−1− x0,b+Xm−1wm

)
−

1
2

[
y−g

(
x0,m−1

)]TR−1 [y−g (x0,m−1
)]

+
[
y−g

(
x0,m−1

)]TR−10m−1wm

−
1
2
wTm0

T
m−1R−10m−1wm

=−
σ 2
m

2
wTmwm−

1
2

(
x0,m−1− x0,b

)T
×P−1

0,b
(
x0,m−1− x0,b

)
−

1
2

[
y−g

(
x0,m−1

)]TR−1 [y−g (x0,m−1
)]

−
(
x0,m−1− x0,b

)T P−1
0,bXm−1wm

+
[
y−g

(
x0,m−1

)]TR−10m−1wm

−
1
2
wTmXTm−1P−1

0,bXm−1wm

−
1
2
wTm0

T
m−1R−10m−1wm, (59)

which satisfies the following conditions:

J †
wm

(
wm|x0,m−1

)
≤ Jwm (wm)

≈ J
(
x0,m−1+Xm−1wm

)
, (60)

J †
wm

(
0|x0,m−1

)
= Jwm(0)= J

(
x0,m−1

)
. (61)

This function is maximized when, in the following:

ŵm =
(
σ 2
mI+XTm−1P−1

0,bXm−1+0
T
m−1R−10m−1

)−1

×

(
0Tm−1R−1 [y−g (x0,m−1

)]
−XTm−1P−1

0,b
(
x0,m−1− x0,b

))
. (62)

The mth estimate for x0 is obtained as follows:

x0,m = x0,m−1+Xm−1ŵm. (63)

Similar to Eq. (54), we obtain the following:

J
(
x0,m−1

)
= Jwm(0)≤ Jwm

(
ŵm

)
≈ J

(
x0,m−1+Xm−1ŵm

)
= J`

(
x0,m

)
. (64)

Thus, x0,m is a better estimate than x0,m−1 if the approxima-
tion in Eq. (44) is valid. Generating the (m+ 1)th ensemble
around x0,m, we can obtain the (m+ 1)th surrogate function
according to Eq. (59) and proceed to the next iteration.

There are various methods for updating the ensemble in-
cluding the methods mentioned in Sect. 4. Eq. (32) or (34)

is convenient for practical problems because we can avoid
computing the inverse of P0,b in Eq. (62). When Eq. (32) is
used for updating the ensemble, we can easily avoid com-
puting the inverse of P0,b by drawing initial ensemble mem-
bers from the prior distribution N (x0;x0,b,P0,b). If initial

ensemble members
{
x
(1)
0,0, . . .,x

(N)
0,0

}
obey the prior distribu-

tion, we can use the same approximation as Eq. (13); that is,
in the following:

XT0,bP
−1
0,bX0,b ≈ I. (65)

Applying Eq. (63) recursively, x0,m−1 can be reduced to the
following:

x0,m−1 = x0,m−2+Xm−2ŵm−1

= x0,m−3+Xm−3ŵm−2+Xm−2ŵm−1

= ·· · = x0,0+

m−1∑
i=1

Xi−1ŵi

= x0,0+X0,b

m−1∑
i=1

αi−1ŵi . (66)

Inserting Eqs. (32) and (66) into Eq. (62) and applying
Eq. (65), we obtain the following:

ŵm ≈
([
σ 2
m+α

2
m−1

]
I+0Tm−1R−10m−1

)−1

×

(
0Tm−1R−1 [y−g (x0,m−1

)]
−αm−1

m−1∑
i=1

αi−1ŵi

)
. (67)

Thus, we can avoid computing the inverse of P0,b. Likewise,
when Eq. (34) is used for updating the ensemble, we can ap-
ply Eq. (65) to avoid computing the inverse of P0,b (See the
Appendix).

As described in the previous section, the use of Eq. (32)
of (34) confines the estimate x0,m−1 within the subspace
spanned by the initial ensemble. On the other hand, Eq. (36)
enables us to seek the optimal value of x0 in a different sub-
space in each iteration. We can then obtain the local maxi-
mum in the full vector space if Qm is taken to be full rank.
It appears that a similar approximation to Eq. (67) is appli-
cable if Qm is taken to be a scalar matrix of P0,b. However,
since this approximation considers a different approximate
objective function in each iteration, monotonic convergence
is not guaranteed. In order to ensure monotonic convergence,
Eq. (36) requires the inverse of P0,b in general. Nonetheless,
if P−1

0,b can be obtained, the method with Eq. (36) would be
helpful for improving the estimate.

7 Experiments

Preceding studies have already demonstrated the usefulness
of the ensemble-based iterative algorithms for various data
assimilation problems. Estimation with the ensemble update
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in Eq. (32) has been verified in detail (e.g., Bocquet and
Sakov, 2014). The iterative algorithm ensemble update in
Eq. (34) has also been demonstrated (e.g., Minami et al.,
2020). Although it might not be necessary to show the abil-
ity of the ensemble-based iterative algorithm further, we here
verify some properties suggested in the above discussion
through twin experiments with a simple model rather than
a practical model.

In this section, we employ the Lorenz 96 model (Lorenz
and Emanuel, 1998), which is written by the following equa-
tions:

dxm
dt
= (xm+1− xm−2)xm−1− xm+ f, (68)

form= 1, . . .,M , where x−1 = xM−1, x0 = xM , and xM+1 =

x1. The state dimension M was taken to be 40, and the forc-
ing term f was taken to be 8. The true scenario was gener-
ated by running the model with a certain initial state. We here
consider a weakly nonlinear problem. The assimilation win-
dow was accordingly taken as a short time interval 0< t ≤ 8.
It was assumed that all the state variables could be observed
with a fixed time interval (1t = 0.1), and hence, 80 data were
generated for each state variable. The observation noise for
each variable was assumed to independently follow a Gaus-
sian distribution with mean 0 and standard deviation 0.5. In
each data assimilation experiment, the prior distribution was
assumed to be a Gaussian distribution with mean 0 and vari-
ance ζ 2I, N (0,ζ 2I), where ζ = 5.

We compare two ensemble updating methods of Eqs. (32)
and (36). In applying Eq. (32), the initial ensemble{
x
(1)
0,0, . . .,x

(N)
0,0

}
was drawn from a Gaussian distribution

N (0,ε2I), where ε = 5× 10−6 and X0 was obtained as fol-
lows:

X0 =
1
√
N

(
x
(1)
0,0− x0,0 · · · x

(N)
0,0 − x0,0

)
. (69)

The matrix Xm for each iteration was fixed at Xm = X0,
which corresponds to the setting in Eq. (32) with αm = 1.
The discussion in Sect. 5 suggests that the penalty parame-
ter σ 2

m should be determined according to Eq. (55). Although(
∇

2g
)

is unknown, we can say that σ 2
m should be related with

the variance of the ensemble and the discrepancy between y
and g(x0,m−1). We thus gave σ 2

m as follows:

σ 2
m = δ

2
√(
yK −gK

(
x̂0,m−1

))T R−1
K

(
yK −gK

(
x̂0,m−1

))
×tr

(
0Tm−1R−10m−1

)
, (70)

where we tried two cases with δ = 1.5× 10−3 and δ =

1.5× 10−2. Here the part of the square root of a quadratic
form of yK −gK(x̂0,m−1) was multiplied in order that
σ 2
m was roughly proportional to ‖y−g(x0,m−1)‖, and

tr
(
0Tm−1R−10m−1

)
was for representing the variance of the

ensemble.

Figure 1. The value of the objective function J for each iteration for
20 trials of the estimation. The ensemble was updated using Eq. (32)
with δ = 1.5× 10−3.

Figure 2. The value of the objective function J for each iteration for
20 trials of the estimation. The ensemble was updated using Eq. (32)
with δ = 1.5× 10−2.

Figures 1 and 2 show results with Eq. (32), where δ =
1.5×10−3 and δ = 1.5×10−2, respectively. We took the en-
semble size N to be 30, which is less than the state dimen-
sion, and performed the estimation 20 times with different
seeds of a pseudo random number generator. The value of the
objective function J in Eq. (56) for each iteration is plotted
for each of 20 trials in these figures. When δ = 1.5× 10−3,
the value of J tended to increase more sharply than when
δ = 1.5× 10−2. However, J did not monotonically increase
when δ = 1.5×10−3, while it monotonically increased when
δ = 1.5×10−2. According to the discussion in Sect. 5, mono-
tonic convergence is achieved when σ 2

m is taken to be large
enough. However, convergence speed becomes slow when
σ 2
m is large. The results in Figs. 1 and 2 thus confirmed our

discussion on the convergence. However, the results shown
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Figure 3. The value of the objective function J for each iteration for
20 trials of the estimation. The ensemble was updated using Eq. (36)
with δ = 1.5× 10−3.

in Figs. 1 and 2 did not converge to the same value, which
means the results depended on the seeds of pseudo random
numbers. This would indicate that a local maximum within a
subspace spanned by the ensemble does not match the max-
imum in the full state vector space, and that the value of the
local maximum depends on the subspace.

Figures 3 and 4 show results with Eq. (36), where δ =
1.5× 10−3 and δ = 1.5× 10−2, respectively. Again, the en-
semble size N was taken to be 30, and the results of 20
trials with different seeds of pseudo random numbers are
overplotted. Again, when δ = 1.5× 10−3, the increase in J
tended to be sharp, while it was not monotonic. On the other
hand, when δ = 1.5×10−2, the increase in J was gradual but
monotonic. In contrast with the results in Figs. 3 and 4, the
values of J in different trials converged to the same value
after about 15 iterations, as in the case with δ = 1.5× 10−3

shown in Fig. 3. In the case with δ = 1.5×10−2, the conver-
gence was much slower, but the values of J converged to the
same value as the case with δ = 1.5×10−2 after about 80 it-
erations in all of the 20 trials (not shown). These results show
that the maximum of the objective function in the full vector
space can be reached by changing an ensemble in each itera-
tion even if the ensemble does not span the full vector space.

Figure 5 shows the convergence of the estimated time se-
ries to the true time series for one of the 40 state variables,
x1, in one of the 20 trials in Fig. 4. The red line indicates
the initial guess obtained by running the Lorenz 96 model
started at x0,0. The yellow, green, and blue lines show the
estimates after the second, 10th, and 30th iterations, respec-
tively. The truth is indicated with the gray line, and the time
series of the synthetic observations used in this experiment
are overplotted with gray dots. Although the initial trajectory
(red line) showed was obviously dissimilar to the true trajec-
tory (gray line), the estimate was improved by repeating the
iterations as also shown in Fig. 4. After 30 iterations, the es-

Figure 4. The value of the objective function J for each iteration for
20 trials of the estimation. The ensemble was updated using Eq. (36)
with δ = 1.5× 10−2.

Figure 5. The temporal evolution started at the initial guess (red
line), and the estimated evolutions after the second (yellow line),
10th (green line), and 30th iterations (blue line) in one of the 20
trials in Fig. 4. The truth is indicated with the gray line, and the
time series of the synthetic observations used in this experiment are
overplotted with gray dots.

timate was very close to the truth, and the temporal evolution
was well reproduced. Figure 6 shows the root mean square
errors of the estimates, which means the root mean squares
of the differences between the estimates and the true values
over all the 40 variables at each time step in the same trial
as in Fig. 5. Again, the red line indicates the initial guess,
and the yellow, green, and blue lines show the estimates after
the second, 10th, and 30th iterations, respectively. The errors
were certainly reduced over the period of the assimilation by
the iterations.

In order to closely investigate the effect of σ 2
m, we con-

ducted additional experiments for a case in which nonlinear-
ity is a little stronger. While Figs. 3 and 4 show the results
when the assimilation window was taken as 0< t ≤ 8, Figs. 7
and 8 show the results with a little longer assimilation win-
dow, 0< t ≤ 10. Although the other settings were the same
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Figure 6. The root mean square errors over all the 40 variables at
each time step for the initial guess (red line), the second iteration
(yellow line), the 10th iteration (green line), and the 30th iteration
(blue line) in the same trial as Fig. 5.

Figure 7. The value of the objective function J for each iteration for
20 trials of the estimation. The ensemble was updated using Eq. (36)
with δ = 1.5× 10−3, and the ensemble window was taken as 0<
t ≤ 10.

as Figs. 3 and 4, the effect of the nonlinearity on the objective
function J was a little more severe due to the longer assimila-
tion window. When δ = 1.5×10−3, the J value converged to
about−2000 in many of the 20 trials. In some trials, however,
J did not converge but oscillated below −6000. In contrast,
when δ was as large as 1.5× 10−2, the J value converged to
the same value after about 50 iterations in all of the 20 trials.
As discussed in Sect. 5, a sufficiently large σ 2

m guarantees
that the estimate is improved in each iteration. Although the
convergence speed becomes worse, a stable estimation can
be attained.

We also conducted experiments with a higher-dimensional
system. The method with a randomly generated ensemble
was applied to the Lorenz 96 model with 400 variables
(M = 400), of which the dimension is 10 times higher. Fig-
ure 9 shows the result with 400 variables. The assimilation

Figure 8. The value of the objective function J for each iteration for
20 trials of the estimation. The ensemble was updated using Eq. (36)
with δ = 1.5× 10−2, and the ensemble window was taken as 0<
t ≤ 10.

Figure 9. The value of the objective function J for each iteration
for 20 trials of the estimation for the 400 dimensional system. The
ensemble was updated using Eq. (36) with δ = 1.5× 10−3.

was taken as 0< t ≤ 8, and δ was set at 1.5× 10−3, which
is the same as the result in Fig. 3. The ensemble size N
was taken to be 200. For the assimilation into the Lorenz
96 model with 400 variables, the convergence was attained in
about 20 iterations with 200 ensemble members. In this high-
dimensional case, monotonic convergence was achieved even
if δ was taken to be as small as in Fig. 3. As far as we con-
ducted experiments with the Lorenz 96 model with various
dimensions, the convergence becomes stabler as the state di-
mension M becomes higher. This might imply that the non-
linear term (the fifth term of the right-hand side of Eq. 58) is
depressed in the high-dimensional Lorenz 96 models. How-
ever, we have not resolved the reason for the stable conver-
gence for the high-dimensional Lorenz 96 systems at present.
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Figure 10. The temporal evolution started at the initial guess (red
line), and the estimated evolutions at the second (yellow line), 10th
(green line), and 30th iterations (blue line) in one of the 20 trials in
Fig. 9. The truth is indicated with the gray line, and the time series
of the synthetic observations used in this experiment are overplotted
with gray dots.

Figure 11. The root mean square errors over all the 400 variables
at each time step for the initial guess (red line), the second iteration
(yellow line), the 10th iteration (green line), and the 30th iteration
(blue line) in the same trial as Fig. 10.

In Fig. 10, we confirmed the convergence of the estimated
time series to the true trajectory for one of the 400 state vari-
ables, x1, in one of the 20 trials in Fig. 9. The red line indi-
cates the initial guess started at x0,0, and the yellow, green,
and blue lines shows the estimates after the second, 10th, and
30th iterations, respectively. The gray line shows the truth,
and the gray dots show the synthetic observations used in this
experiment. Similar to Fig. 5, the estimate approached to the
truth by repeating the iterations even in this high-dimensional
case, and the true evolution was well reproduced after 30 it-
erations. In Fig. 11, the root mean square errors over all the
400 variables at each time step are in the same trial as Fig. 10.
Each color corresponds to the respective iteration shown in
Fig. 10. It is confirmed that the errors decreased over the pe-
riod of the assimilation after repeating the iterations.

8 Discussion and conclusions

The ensemble variational method is derived under the as-
sumption that a linear approximation of a dynamical system
model is valid over a range of uncertainty. This linear ap-
proximation is not valid in such problems where the scale of
uncertainty is much larger than the range of linearity. How-
ever, a local maximum of the log-likelihood or log-posterior
function can be attained by updating the ensemble iteratively
– even in cases with a large uncertainty. The present paper
assessed the influence of system nonlinearity on this itera-
tive algorithm after considering the nonlinear terms of the
system function g. The discussion suggests two points to
guarantee the monotonic convergence to a local maximum
in the subspace spanned by the ensemble. One is that the en-
semble spread must be set to be small, and the other is that
the penalty parameter σ 2

m must be set to be large enough. A
sufficiently large σ 2

m would ensure monotonic convergence,
although convergence speed would become poorer with too
large a σ 2

m. The effect of this penalty term has also been ex-
perimentally confirmed in Sect. 7. These properties would
be reasonable if this iterative algorithm is regarded as an ap-
proximation of the Levenberg–Marquardt method.

In applying the iterative algorithm discussed in this paper,
the choice of the parameter σ 2

m would be an important issue.
Although it was determined according to Eq. (70) in Sect. 7,
Eq. (70) still requires tuning of the parameter δ. However, it
is not necessary to finely tune δ because δ would not have a
crucial effect on the performance of the algorithm. It would
thus be enough to roughly determine δ. In addition, one could
check whether the objective function J increases or not at
each iteration just by running one forward simulation initial-
ized at x0,m. In the iterative algorithm, the most computa-
tional cost is spent on running the ensemble simulation with
multiple initial states. The pilot run, which is computation-
ally much cheaper than the ensemble run, would be a feasible
way of tuning δ in practical cases.

One issue peculiar to the ensemble-based method is the
rank deficiency, which occurs when the ensemble size is
smaller than the dimension of the initial state x0. If the en-
semble is confined within a particular subspace, the iterative
algorithm can only attain the optimal value within the sub-
space spanned by the ensemble. However, our discussion in-
dicates that, if σ 2

m is sufficiently large, then it is ensured that
the discrepancies between estimates and observations are re-
duced in each iteration – even if the ensemble is confined
within a subspace. If the ensemble is updated so as to span a
different subspace in each iteration, as indicated in Eq. (36),
the optimal solution would be sought in a different subspace
in each iteration, and the estimate would converge to a lo-
cal maximum in the full vector space after infinite iterations.
It should be noted that this paper has not assessed how well
the method with a random ensemble generation with Eq. (36)
works in practical high-dimensional problems, although it is,
in theory, applicable as far as the inverse of P0,b is available.

https://doi.org/10.5194/npg-28-93-2021 Nonlin. Processes Geophys., 28, 93–109, 2021



106 S. Nakano: Ensemble variational method

Further research would be required to clarify its performance
in high-dimensional geophysical models in order to reinforce
this study.

Compared with the adjoint method, which is a conven-
tional variational method for 4D variational problems, the
convergence rate of this iterative method would be poorer be-
cause it employs an ensemble approximation within a lower-
dimensional subspace at each iteration. Nonetheless, we can
say that the iterative ensemble-based method is potentially
useful because it is much easier to implement. While the ad-
joint method requires an adjoint code which is usually time-
consuming to develop, the ensemble-based method can solve
the same problem without requiring an adjoint code. This pa-
per mainly considers data assimilation problems. However,
the framework of the iterative ensemble variational method
is also applicable to general nonlinear inverse problems as
far as the Gaussian assumption in Eq. (23) or Eq. (56) is up-
held. If an ensemble of the results of forward runs is avail-
able, many practical problems can readily be addressed. This
method could therefore be a promising tool for data assimi-
lation and various inverse problems.
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Appendix A: Algorithm for Bayesian estimation with
ensemble transform

In the following, it is described how the iteration can be per-
formed without computing the inverse of P0,b when the en-
semble is updated with the ensemble transform scheme in
Eq. (34). When the ensemble is updated by the ensemble
transform in the manner of Eq. (34) as follows:

Xm = Xm−1Tm, (A1)

the transform matrix Tm should be given as follows:

Tm = Um(I+3m)−
1
2 UTm, (A2)

where Um and 3m are obtained by the following eigenvalue
decomposition:

Um3mUTm = σ
−2
m

(
XTm−1P−1

0,bXm−1+0
T
m−1R−10m−1

)
. (A3)

If Xm−1 is obtained according to Eq. (A1), as follows:

Xm−1 = Xm−2Tm−1 = X0T1T2· · ·Tm−1. (A4)

Defining the matrix Cm−1 as follows:

Cm−1 = T1T2· · ·Tm−1, (A5)

Xm−1 can be written as follows:

Xm−1 = X0Cm−1. (A6)

If the initial ensemble is sampled from the prior distribution
N (x0;x0,b,P0,b), then we can apply Eq. (65) again. Using
Eqs. (65) and (A6), the term XTm−1P−1

0,bXm−1 in Eq. (62) can
be reduced to the following:

XTm−1P−1
0,bXm−1 = CTm−1Cm−1. (A7)

The mth estimate is broken down as follows:

x0,m−1 = x0,m−2+Xm−2ŵm−1 = x0,b+

m−1∑
i=1

Xi−1ŵi

= x0,b+X0

m−1∑
i=1

Ci−1ŵi, (A8)

where C0 = I. Defining a vector ξm−1 is as follows:

ξm−1 =

m−1∑
i=1

Ci−1ŵi,
(
ξ0 = 0

)
, (A9)

then Eq. (A8) becomes the following:

x0,m−1 = x0,b+X0ξm−1, (A10)

and we obtain the following:

XTm−1P−1
0,b
(
x0,m−1− x0,b

)
= CTm−1XT0 P−1

0,bX0ξm−1

≈ CTm−1ξm−1. (A11)

Using Eqs. (65) and (A11), we can rewrite Eq. (62) into a
form without the inverse of P0,b as follows:

ŵm =
(
σ 2
mI+CTm−1Cm−1+0

T
m−1R−10m−1

)−1

×

(
0Tm−1R−1 [y−g (x0,m−1

)]
−CTm−1ξm−1

)
. (A12)

The algorithm with the ensemble transform is summarized in
Algorithm 2.
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Code availability. The code for reproducing the experi-
mental results shown in Sect. 7 is archived on Zenodo
(https://doi.org/10.5281/zenodo.4420875; Nakano, 2020).
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