Articles | Volume 28, issue 3
Nonlin. Processes Geophys., 28, 295–309, 2021
https://doi.org/10.5194/npg-28-295-2021
Nonlin. Processes Geophys., 28, 295–309, 2021
https://doi.org/10.5194/npg-28-295-2021
Research article
06 Jul 2021
Research article | 06 Jul 2021

Ensemble Riemannian data assimilation over the Wasserstein space

Sagar K. Tamang et al.

Related authors

Ensemble Riemannian data assimilation: towards large-scale dynamical systems
Sagar K. Tamang, Ardeshir Ebtehaj, Peter Jan van Leeuwen, Gilad Lerman, and Efi Foufoula-Georgiou
Nonlin. Processes Geophys., 29, 77–92, https://doi.org/10.5194/npg-29-77-2022,https://doi.org/10.5194/npg-29-77-2022, 2022
Short summary
Framework for quantifying flow and sediment yield to diagnose and solve the aggradation problem of an ungauged catchment
Sagar Kumar Tamang, Wenjun Song, Xing Fang, Jose Vasconcelos, and J. Brian Anderson
Proc. IAHS, 379, 131–138, https://doi.org/10.5194/piahs-379-131-2018,https://doi.org/10.5194/piahs-379-131-2018, 2018
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Applying prior correlations for ensemble-based spatial localization
Chu-Chun Chang and Eugenia Kalnay
Nonlin. Processes Geophys., 29, 317–327, https://doi.org/10.5194/npg-29-317-2022,https://doi.org/10.5194/npg-29-317-2022, 2022
Short summary
A stochastic covariance shrinkage approach to particle rejuvenation in the ensemble transform particle filter
Andrey A. Popov, Amit N. Subrahmanya, and Adrian Sandu
Nonlin. Processes Geophys., 29, 241–253, https://doi.org/10.5194/npg-29-241-2022,https://doi.org/10.5194/npg-29-241-2022, 2022
Short summary
Ensemble Riemannian data assimilation: towards large-scale dynamical systems
Sagar K. Tamang, Ardeshir Ebtehaj, Peter Jan van Leeuwen, Gilad Lerman, and Efi Foufoula-Georgiou
Nonlin. Processes Geophys., 29, 77–92, https://doi.org/10.5194/npg-29-77-2022,https://doi.org/10.5194/npg-29-77-2022, 2022
Short summary
Inferring the instability of a dynamical system from the skill of data assimilation exercises
Yumeng Chen, Alberto Carrassi, and Valerio Lucarini
Nonlin. Processes Geophys., 28, 633–649, https://doi.org/10.5194/npg-28-633-2021,https://doi.org/10.5194/npg-28-633-2021, 2021
Short summary
Multivariate localization functions for strongly coupled data assimilation in the bivariate Lorenz 96 system
Zofia Stanley, Ian Grooms, and William Kleiber
Nonlin. Processes Geophys., 28, 565–583, https://doi.org/10.5194/npg-28-565-2021,https://doi.org/10.5194/npg-28-565-2021, 2021
Short summary

Cited articles

Agueh, M. and Carlier, G.: Barycenters in the Wasserstein space, SIAM J. Math. Anal., 43, 904–924, 2011. a
Altman, A. and Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization, Optim. Method. Softw., 11, 275–302, 1999. a
Amari, S.: Differential-geometrical methods in statistics, vol. 28, Springer Science & Business Media, New York, NY, 2012. a, b
Amezcua, J., Ide, K., Kalnay, E., and Reich, S.: Ensemble transform Kalman–Bucy filters, Q. J. Roy. Meteor. Soc., 140, 995–1004, 2014. a
Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, 1996. a
Download
Short summary
Data assimilation aims to improve hydrologic and weather forecasts by combining available information from Earth system models and observations. The classical approaches to data assimilation usually proceed with some preconceived assumptions about the shape of their probability distributions. As a result, when such assumptions are invalid, the forecast accuracy suffers. In the proposed methodology, we relax such assumptions and demonstrate improved performance.