Articles | Volume 28, issue 3
https://doi.org/10.5194/npg-28-295-2021
https://doi.org/10.5194/npg-28-295-2021
Research article
 | 
06 Jul 2021
Research article |  | 06 Jul 2021

Ensemble Riemannian data assimilation over the Wasserstein space

Sagar K. Tamang, Ardeshir Ebtehaj, Peter J. van Leeuwen, Dongmian Zou, and Gilad Lerman

Related authors

Ensemble Riemannian data assimilation: towards large-scale dynamical systems
Sagar K. Tamang, Ardeshir Ebtehaj, Peter Jan van Leeuwen, Gilad Lerman, and Efi Foufoula-Georgiou
Nonlin. Processes Geophys., 29, 77–92, https://doi.org/10.5194/npg-29-77-2022,https://doi.org/10.5194/npg-29-77-2022, 2022
Short summary
Framework for quantifying flow and sediment yield to diagnose and solve the aggradation problem of an ungauged catchment
Sagar Kumar Tamang, Wenjun Song, Xing Fang, Jose Vasconcelos, and J. Brian Anderson
Proc. IAHS, 379, 131–138, https://doi.org/10.5194/piahs-379-131-2018,https://doi.org/10.5194/piahs-379-131-2018, 2018
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary
Evolution of small-scale turbulence at large Richardson numbers
Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh
Nonlin. Processes Geophys., 31, 219–227, https://doi.org/10.5194/npg-31-219-2024,https://doi.org/10.5194/npg-31-219-2024, 2024
Short summary
How far can the statistical error estimation problem be closed by collocated data?
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398, https://doi.org/10.5194/npg-30-375-2023,https://doi.org/10.5194/npg-30-375-2023, 2023
Short summary

Cited articles

Agueh, M. and Carlier, G.: Barycenters in the Wasserstein space, SIAM J. Math. Anal., 43, 904–924, 2011. a
Altman, A. and Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization, Optim. Method. Softw., 11, 275–302, 1999. a
Amari, S.: Differential-geometrical methods in statistics, vol. 28, Springer Science & Business Media, New York, NY, 2012. a, b
Amezcua, J., Ide, K., Kalnay, E., and Reich, S.: Ensemble transform Kalman–Bucy filters, Q. J. Roy. Meteor. Soc., 140, 995–1004, 2014. a
Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, 1996. a
Download
Short summary
Data assimilation aims to improve hydrologic and weather forecasts by combining available information from Earth system models and observations. The classical approaches to data assimilation usually proceed with some preconceived assumptions about the shape of their probability distributions. As a result, when such assumptions are invalid, the forecast accuracy suffers. In the proposed methodology, we relax such assumptions and demonstrate improved performance.