Articles | Volume 27, issue 1
Nonlin. Processes Geophys., 27, 51–74, 2020
https://doi.org/10.5194/npg-27-51-2020
Nonlin. Processes Geophys., 27, 51–74, 2020
https://doi.org/10.5194/npg-27-51-2020

Research article 19 Feb 2020

Research article | 19 Feb 2020

Application of a local attractor dimension to reduced space strongly coupled data assimilation for chaotic multiscale systems

Courtney Quinn et al.

Related authors

Applications of matrix factorization methods to climate data
Dylan Harries and Terence J. O'Kane
Nonlin. Processes Geophys., 27, 453–471, https://doi.org/10.5194/npg-27-453-2020,https://doi.org/10.5194/npg-27-453-2020, 2020
Short summary
Theoretical comparison of subgrid turbulence in atmospheric and oceanic quasi-geostrophic models
Vassili Kitsios, Jorgen S. Frederiksen, and Meelis J. Zidikheri
Nonlin. Processes Geophys., 23, 95–105, https://doi.org/10.5194/npg-23-95-2016,https://doi.org/10.5194/npg-23-95-2016, 2016
Short summary
Systematic attribution of observed Southern Hemisphere circulation trends to external forcing and internal variability
C. L. E. Franzke, T. J. O'Kane, D. P. Monselesan, J. S. Risbey, and I. Horenko
Nonlin. Processes Geophys., 22, 513–525, https://doi.org/10.5194/npg-22-513-2015,https://doi.org/10.5194/npg-22-513-2015, 2015

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021,https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary
A method for predicting the uncompleted climate transition process
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500, https://doi.org/10.5194/npg-27-489-2020,https://doi.org/10.5194/npg-27-489-2020, 2020
Short summary
Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst
Reinhold Hess
Nonlin. Processes Geophys., 27, 473–487, https://doi.org/10.5194/npg-27-473-2020,https://doi.org/10.5194/npg-27-473-2020, 2020
Short summary
An Early Warning Sign of Critical Transition in The Antarctic Ice Sheet – A New Data Driven Tool for Spatiotemporal Tipping Point
Abd AlRahman AlMomani and Erik Bollt
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-26,https://doi.org/10.5194/npg-2020-26, 2020
Revised manuscript accepted for NPG
Short summary
Correcting for model changes in statistical postprocessing – an approach based on response theory
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020,https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary

Cited articles

Abarbanel, H. D., Brown, R., and Kennel, M. B.: Variation of Lyapunov exponents on a strange attractor, J. Nonlinear Sci., 1, 175–199, 1991. a
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999. a, b
Benettin, G., Galgani, L., and Strelcyn, J.-M.: Kolmogorov entropy and numerical experiments, Phys. Rev. A, 14, 2338, https://doi.org/10.1103/PhysRevA.14.2338, 1976. a
Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects, Mon. Weather Rev., 129, 420–436, 2001. a, b, c
Bocquet, M. and Carrassi, A.: Four-dimensional ensemble variational data assimilation and the unstable subspace, Tellus A, 69, 1304504, https://doi.org/10.1080/16000870.2017.1304504, 2017. a
Download
Short summary
This study presents a novel method for reduced-rank data assimilation of multiscale highly nonlinear systems. Time-varying dynamical properties are used to determine the rank and projection of the system onto a reduced subspace. The variable reduced-rank method is shown to succeed over other fixed-rank methods. This work provides implications for performing strongly coupled data assimilation with a limited number of ensemble members on high-dimensional coupled climate models.