Articles | Volume 25, issue 3
https://doi.org/10.5194/npg-25-671-2018
https://doi.org/10.5194/npg-25-671-2018
Research article
 | 
10 Sep 2018
Research article |  | 10 Sep 2018

The onset of chaos in nonautonomous dissipative dynamical systems: a low-order ocean-model case study

Stefano Pierini, Mickaël D. Chekroun, and Michael Ghil

Related authors

Intrinsic variability of the Antarctic Circumpolar Current system: low- and high-frequency fluctuations of the Argentine Basin flow
G. Sgubin, S. Pierini, and H. A. Dijkstra
Ocean Sci., 10, 201–213, https://doi.org/10.5194/os-10-201-2014,https://doi.org/10.5194/os-10-201-2014, 2014
X-band COSMO-SkyMed wind field retrieval, with application to coastal circulation modeling
A. Montuori, P. de Ruggiero, M. Migliaccio, S. Pierini, and G. Spezie
Ocean Sci., 9, 121–132, https://doi.org/10.5194/os-9-121-2013,https://doi.org/10.5194/os-9-121-2013, 2013

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Solid earth, continental surface, biogeochemistry
Modelling of the terrain effect in magnetotelluric data from the Garhwal Himalaya region
Suman Saini, Deepak Kumar Tyagi, Sushil Kumar, and Rajeev Sehrawat
Nonlin. Processes Geophys., 31, 175–184, https://doi.org/10.5194/npg-31-175-2024,https://doi.org/10.5194/npg-31-175-2024, 2024
Short summary
Uncertainties, complexities and possible forecasting of Volcán de Colima energy emissions (Mexico, years 2013–2015) based on a fractal reconstruction theorem
Marisol Monterrubio-Velasco, Xavier Lana, and Raúl Arámbula-Mendoza
Nonlin. Processes Geophys., 30, 571–583, https://doi.org/10.5194/npg-30-571-2023,https://doi.org/10.5194/npg-30-571-2023, 2023
Short summary
The joint application of a metaheuristic algorithm and a Bayesian statistics approach for uncertainty and stability assessment of nonlinear magnetotelluric data
Mukesh, Kuldeep Sarkar, and Upendra K. Singh
Nonlin. Processes Geophys., 30, 435–456, https://doi.org/10.5194/npg-30-435-2023,https://doi.org/10.5194/npg-30-435-2023, 2023
Short summary
On parameter bias in earthquake sequence models using data assimilation
Arundhuti Banerjee, Ylona van Dinther, and Femke C. Vossepoel
Nonlin. Processes Geophys., 30, 101–115, https://doi.org/10.5194/npg-30-101-2023,https://doi.org/10.5194/npg-30-101-2023, 2023
Short summary
An approach for constraining mantle viscosities through assimilation of palaeo sea level data into a glacial isostatic adjustment model
Reyko Schachtschneider, Jan Saynisch-Wagner, Volker Klemann, Meike Bagge, and Maik Thomas
Nonlin. Processes Geophys., 29, 53–75, https://doi.org/10.5194/npg-29-53-2022,https://doi.org/10.5194/npg-29-53-2022, 2022
Short summary

Cited articles

Arnold, L.: Random Dynamical Systems, Springer, Berlin, Germany, 1998. a
Bódai, T. and Tél, T.: Annual variability in a conceptual climate model: Snapshot attractors, hysteresis in extreme events, and climate sensitivity, Chaos, 22, 023110, https://doi.org/10.1063/1.3697984, 2012. a, b
Bódai, T., Károlyi, G., and Tél, T.: Driving a conceptual model climate by different processes: Snapshot attractors and extreme events, Phys. Rev. E, 87, 022822, https://doi.org/10.1103/PhysRevE.87.022822, 2013. a, b
Boyles, R. and Gardner, W. A.: Cycloergodic properties of discrete-parameter nonstationary stochastic processes, IEEE T. Inform. Theory, 29, 105–114, 1983. a
Carrassi, A., Ghil, M., Trevisan, A., and Uboldi, F.: Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system, Chaos, 18, 023112, https://doi.org/10.1063/1.2909862, 2008a. a
Download
Short summary
A four-dimensional nonlinear spectral ocean model is used to study the transition to chaos induced by periodic forcing in systems that are nonchaotic in the autonomous limit. The analysis makes use of ensemble simulations and of the system's pullback attractors. A new diagnostic method characterizes the transition to chaos: this is found to occur abruptly at a critical value and begins with the intermittent emergence of periodic oscillations with distinct phases.