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Abstract. A four-dimensional nonlinear spectral ocean
model is used to study the transition to chaos induced by
periodic forcing in systems that are nonchaotic in the au-
tonomous limit. The analysis relies on the construction of the
system’s pullback attractors (PBAs) through ensemble simu-
lations, based on a large number of initial states in the remote
past. A preliminary analysis of the autonomous system is car-
ried out by investigating its bifurcation diagram, as well as by
calculating a metric that measures the mean distance between
two initially nearby trajectories, along with the system’s en-
tropy. We find that nonchaotic attractors can still exhibit sen-
sitive dependence on initial data over some time interval; this
apparent paradox is resolved by noting that the dependence
only concerns the phase of the periodic trajectories, and that
it disappears once the latter have converged onto the attrac-
tor. The periodically forced system, analyzed by the same
methods, yields periodic or chaotic PBAs depending on the
periodic forcing’s amplitude ε. A new diagnostic method –
based on the cross-correlation between two initially nearby
trajectories – is proposed to characterize the transition be-
tween the two types of behavior. Transition to chaos is found
to occur abruptly at a critical value εc and begins with the
intermittent emergence of periodic oscillations with distinct
phases. The same diagnostic method is finally shown to be a
useful tool for autonomous and aperiodically forced systems
as well.

1 Introduction and motivation

Understanding the mechanisms that lead to the onset of chaos
in dissipative dynamical systems is of fundamental impor-
tance both from a cognitive viewpoint and for the correct
use of the mathematical models on which the systems are
based. Chaos arises in such systems as a control parame-
ter in the governing equations crosses a given threshold. A
huge amount of work has been devoted to analyzing the tran-
sition to chaos in the framework of autonomous dynamical
systems, i.e., in systems in which the external forcing and
the coefficients do not depend on time. The various routes
to chaos in autonomous dissipative systems – in the pres-
ence of time-independent forcing — include period-doubling
cascades, intermittency and crisis, quasiperiodic routes, and
global bifurcations (e.g., Nicolis, 1995; Hilborn, 2000; Ott,
2002; Tél and Gruiz, 2006; Strogatz, 2015).

Nonautonomous dissipative dynamical systems represent
a crucial extension of autonomous systems for practical ap-
plications, since the external forcing in most real systems
– whether deterministic, random or both – depends, typi-
cally, on time. Despite their importance, nonautonomous sys-
tems have received, until recently, less attention than au-
tonomous systems. Transition to chaos induced by time-
dependent forcing has, nonetheless, been studied in several
significant cases. A classical example is the Van der Pol os-
cillator (Van der Pol, 1920, 1926), in which chaotic relax-
ation oscillations emerge under the effect of an external pe-
riodic forcing. A few more recent examples in the climate
sciences include (i) transition to chaos due to quasiperiodic
forcing (Le Treut and Ghil, 1983; Ghil, 1994); (ii) mod-
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ification of the autonomous transition by periodic forcing
(Sushama et al., 2007); and (iii) the important contributions
of Anna Trevisan and colleagues to the data assimilation
problem for chaotic systems, in which the data stream can
be seen essentially as a time-dependent forcing (Trevisan
and Uboldi, 2004; Carrassi et al., 2008a, b; Trevisan and
Palatella, 2011).

The onset of chaos is analyzed here in the framework of
nonautonomous systems, which has been received rapidly in-
creasing attention recently in the context of climate dynam-
ics (Ghil et al., 2008; Chekroun et al., 2011; Bódai and Tél,
2012; Bódai et al., 2013; Pierini, 2014; Drótos et al., 2015,
2017; Ghil, 2015, 2017; Pierini et al., 2016; Lucarini et al.,
2017). Our study focuses on a four-dimensional nonlinear
spectral ocean model (Pierini, 2011), which is subjected to
periodic forcing, chosen as the simplest form of time depen-
dence. Cases will be considered that are nonchaotic in the au-
tonomous limit, so that the chaos that emerges in the system
is strictly associated with the nonstationarity of the forcing.

The study makes use of ensemble simulations performed
with many initial states distributed in a given subset of
phase space, following the methodology of Pierini (2014)
and Pierini et al. (2016). The overall idea is that the rele-
vant information in the climate system must be derived from
statistical analyses of an ensemble of different system trajec-
tories, each corresponding to a different initial state, provided
that the corresponding trajectories have converged to the sys-
tem’s time-dependent attractor.

Such an attractor is called a pullback attractor (PBA; e.g.,
Ghil et al., 2008; Chekroun et al., 2011; Kloeden and Ras-
mussen, 2011; Carvalho et al., 2012) in the mathematical lit-
erature and a snapshot attractor (e.g., Romeiras et al., 1990;
Bódai and Tél, 2012; Bódai et al., 2013) in the physical lit-
erature; it provides the natural extension to nonautonomous
dissipative dynamical systems of the classical concept of an
attractor that is fixed in time for autonomous systems. A
global PBA is defined as a time-dependent set A(t) in the
system’s phase space that is invariant under its governing
equations, along with the equally time-dependent, invariant
measure µ(t) supported on this set, and to which all tra-
jectories starting in the remote past converge (Arnold, 1998;
Rasmussen, 2007; Kloeden and Rasmussen, 2011; Carvalho
et al., 2012). In the deterministic case, it is understood that
A(t) depends also on the particular forcing, say F(t), that is
being applied, but this dependence is usually not kept track
of in the notation. In the random case, the PBA is called a
random attractor, and the dependence on the specific realiza-
tion ω of the noise process is often included in the notation,
as A(t,ω).

Pierini et al. (2016) rigourously proved that a weakly dis-
sipative nonlinear model like the one used there and herein
does possess a global PBA, subject to mild integrability con-
ditions on the forcing. In the present study, the numerical ap-
proach used for the systematic investigation of the system’s
PBAs follows Pierini (2014) and Pierini et al. (2016). Further

diagnostic tools will be introduced for the present periodic-
forcing setup, and a new diagnostic tool will also be proposed
to monitor the onset of chaos in our nonautonomous system.

The paper is organized as follows. In Sect. 2, the mathe-
matical model is described. In Sect. 3, the main properties
of the autonomous system are summarized and an apparent
paradox related to the sensitivity to initial states in the peri-
odic regime is discussed. In Sect. 4, the results obtained for
the periodically forced system are presented and discussed;
the new cross-correlation-based method specifically formu-
lated to characterize the onset of chaos is introduced and ap-
plied to the specific case at hand. This method helps charac-
terize the transition to chaos as the amplitude of the periodic
forcing increases, as well as document the coexistence of lo-
cal PBAs with chaotic and nonchaotic behavior within the
model’s global PBA. In Sect. 5, the same method is shown to
be a useful tool also for autonomous and aperiodically forced
systems. Finally, in Sect. 6 the results are summarized and
conclusions are drawn. An appendix illustrates in greater de-
tail the coexistence of local PBAs that are chaotic and non-
chaotic in the setting of a periodically forced Van der Pol–
Duffing oscillator.

2 Model description

The highly idealized model of the oceans’ wind-driven,
double-gyre circulation (Ghil, 2017, and references therein)
used in the present study is governed by the system of four
nonlinear, coupled ordinary differential equations derived by
Pierini (2011); Vannitsem (2014), Vannitsem and De Cruz
(2014) and De Cruz et al. (2018) used this model to represent
the ocean component in their low-order climate models. The
author introduced such a low-order model to complement the
process studies on the Kuroshio Extension’s low-frequency
variability previously carried out with a much more detailed,
primitive equation ocean model (e.g., Pierini, 2006; Pierini
et al., 2009; Pierini and Dijkstra, 2009). The same low-order
model was later used by Pierini (2014) and Pierini et al.
(2016) to explore the PBAs of the system in various cases.
Here we merely review the main aspects of the model; for
all the technical details and parameter values, the interested
reader should kindly refer to Pierini (2011).

The dynamics are governed by the evolution equation of
potential vorticity in the quasigeostrophic approximation on
the beta plane for a shallow layer of fluid, superimposed
on an infinitely deep quiescent lower layer. Pierini (2006)
found such a reduced-gravity model to be a good approxi-
mation for process studies of the Kuroshio Extension’s low-
frequency variability. The flow is described by the stream-
function ψ (x, t): like in the previous studies, ψ , the horizon-
tal coordinates x= (x,y) and the time t are dimensionless,
but the dimensional time will be plotted in all the time series
presented in this study to emphasize the typical timescales of
the oceanic phenomena under investigation.
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A four-dimensional spectral model is obtained by expand-
ing the streamfunction in a rectangular domain as follows:

ψ (x, t)=
4∑
i=1

9i (t) |i〉 . (1)

The orthonormal basis |i〉 is defined as follows:

|1〉 = e−αx sinx siny; |2〉 = e−αx sinx sin2y,
|3〉 = e−αx sin2x siny; |4〉 = e−αx sin2x sin2y,

where α is a real positive constant. This basis satisfies the
free-slip boundary conditions along the borders of the rectan-
gular domain; it also captures the oceanic flow’s westward in-
tensification thanks to the exponential factor first introduced
in the two-dimensional model of Jiang et al. (1995).

The four nonlinear coupled ordinary differential equa-
tions that govern the evolution of the vector 9 (t)=

(91,92,93,94) can be written (see Pierini, 2011) as

d9

dt
+9J9 +L9 =G(t)w. (2)

The coefficients of the nonlinear and linear terms in the equa-
tion are encapsulated by the rank-3 and rank-2 tensors J and
L, respectively, and the forcing is represented by the vector
w (see Pierini, 2011). The forcing w is obtained from a suit-
able double-gyre surface wind stress curl, while G is defined
in the present paper to be periodic,

G(t)= γ [1+ ε sin(ωt)] , (3)

with period Tp = 2π/ω, while γ and ε are positive dimen-
sionless parameters.

To construct the system’s PBAs, ensembles of forward
time integrations are carried out; each of these starts at t = 0
from a different initial point contained in a given subset �
of the model’s four-dimensional phase space and ends at
t = T∗ = 400 years; as shown in Figs. 3 and 9 below, T∗ is
much greater than the spinup time in all cases. Following
Pierini (2014) and Pierini et al. (2016), the four-dimensional
hypercube � is defined as follows:

91,92 ∈ [−70,150] , 93,94 ∈ [−150,120] , (4)

and the initial data are all chosen to satisfy 91 =92 and
93 =94, i.e., to lie within a plane set embedded in �.

The ensembles will consist of 15 000 initial data at t = 0
that are regularly spaced either in � or in a small sub-
set thereof. For the sake of graphical representation, maps
of various quantities will be plotted in the rectangle 0 ≡
{−70≤91 ≤ 150,−150≤93 ≤ 120} ⊂� that lies in the
(91,93) plane. In the discussion of the results, we will refer,
for the sake of simplicity and concision, to the model’s tra-
jectories as being defined in the (91,93) plane but, naturally,
the actual trajectories evolve in the full four-dimensional
phase space.

3 The autonomous system

3.1 The autonomous model’s attractors

We begin by analyzing some basic properties of the au-
tonomous system that will be useful in the subsequent inves-
tigation. The bifurcation diagram of Fig. 1a shows the range
of variability of 91 vs. the forcing parameter γ . The value
γ = 1 corresponds to a global bifurcation that manifests it-
self by a sudden transition from a small-amplitude limit cycle
to a relaxation oscillation with a much higher amplitude. The
previous results in this respect (Pierini, 2011; Pierini et al.,
2016) will be further bolstered by those in Sect. 5 herein
(Figs. 14 and 15), which are based on the diagnostic tool pro-
posed in Sect. 4.2.

Figure 1b shows the limit cycle in 0 arising from arbitrary
initial data for γ = 1.1, which corresponds to the red vertical
line in the bifurcation diagram of panel (a). For γ = 1.35 the
attractor is chaotic (green line in panel a; see Sect. 5.1 fur-
ther below). In this case, the map of the suitably normalized
decimal logarithm of the probability density function (PDF)
of the trajectories in 0 is plotted in Fig. 1c; it is defined by
qk (t)= log10 [1000× nk (t)]. Here nk is the number of tra-
jectories contained at time t in the kth cell belonging to the
same regular grid of N square cells of width19 that is used
in our ensemble simulations, with N = 15000 and 19 = 2,
and it is plotted at t = T∗ = 400 years, i.e., after spinup.

In an autonomous dynamical system, the attractors do, by
definition, not depend on time, i.e., an attractor is a geometric
object in phase space that is fixed in time. However, any at-
tractor that is not a fixed point – whether a limit cycle, torus
or strange attractor – can contain time-dependent trajecto-
ries. Such ensembles of trajectories arising from specific sets
of initial states will be plotted to illustrate the attractors of
the autonomous system studied herein.

Following Pierini et al. (2016), in Fig. 2a, b the attractors
that correspond to the two cases in Fig. 1b, c are represented
by the time evolution of P93(t)= log10(1000×p93), where
p93(t) is the PDF of localization of the 93 variable; see
Pierini et al. (2016) for technical details. The dense distri-
bution of P93(t) for γ = 1.35, as seen in Fig. 2b, is clearly
associated with the chaotic character of the flow, while the
periodic distribution of P93(t) that corresponds to γ = 1.1
in Fig. 2a is due to the different phases that each trajectory
attains on the limit cycle, depending on the initial point.

In Fig. 2c, d, the same attractors are characterized through
the metric σ that was introduced by Pierini et al. (2016); this
metric measures the mean divergence of trajectories over the
total integration time T∗ and is defined as follows. The in-
stantaneous Euclidean distance between two initially close
trajectories is δ(t), and its normalized value is given by
δn(t)= δ(t)/δ(0). Then σ is simply the average of δn over
T∗,
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Figure 1. Behavior of the autonomous ocean model, for which ε = 0 in Eq. (3). (a) Bifurcation diagram, in which the range of the variable
91 is plotted vs. the wind stress intensity γ ; the two cases γ = 1.1 and 1.35 discussed in the text are indicated with a red and a green vertical
line, respectively. (b) Limit cycle in the (91,93) plane, plotted after spinup, that arises from 0 for γ = 1.1. (c) Map of the suitably scaled
PDF of trajectories given by qk ; see text for details.

Figure 2. Distinct autonomous regime behavior for (a, c) γ = 1.1 and (b, d) for γ = 1.35. (a, b) Time evolution of P93 for (a) γ = 1.1 and
(b) γ = 1.35. (c, d) Maps of the mean normalized distance σ for (c) γ = 1.1 and (d) for γ = 1.35; the points P1 = (85,100) and P2 = (25,5)
appear in the panels (c) and (d), respectively. Note the different scales in the two maps; 15 000 trajectories, with regularly spaced initial points
in 0, were used for both maps.
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Figure 3. Typical behavior of time evolution of 93(t) for different values of the parameter γ and different initial points in 0. (a) Two
trajectories obtained for γ = 1.1 and initialized at P1 (red line) and at a nearby point (blue line). (b) Same as in panel (a), but for two
trajectories starting from the point P2 (red) and near it (blue). (c, d) Same as in panels (a) and (b) but for γ = 1.35.

σ(X,Y )=
1
T∗

T∗∫
0

δn(t)dt,

with (X,Y )≡ (91(0),93(0)) ∈ 0. (5)

Pierini et al. (2016) found the quantity σ to be a good indica-
tor of the degree of sensitivity of the system’s evolution with
respect to the initial state during the phase of convergence to
the attractor.

The determination of the PBAs of the periodically forced
system and the application of the new qualitative and quanti-
tative diagnostic methods proposed in Sect. 4 need an analy-
sis of the behavior of trajectories that lie at t = 0 on a given
subset � of phase space, as is the case when calculating
σ(X,Y ) above. Thus, investigating the behavior of model
trajectories as they emerge from � is the most unifying and
distinctive feature of the present model study.

The map of σ in Fig. 2c reveals, in the autonomous case at
hand, the same striking features found by Pierini et al. (2016)
for the nonautonomous, aperiodic-forcing case, namely the
coexistence of extended regions of 0 with σ61, shown by
cold colors, and with σ > 1, appearing as warm colors. In
the first case, two trajectories that are initially close remain
close at all times, as seen in Fig. 3a. In the second case,
though, two trajectories that are initially close may attain a
large phase difference once they have converged to the at-
tractor (cf. Fig. 3b), while still remaining perfectly coherent.

In the chaotic case with γ = 1.35, the warm-color regions,
in which σ > 1, overwhelm the cold-color regions, in which
σ ≤ 1, cf. Fig. 2d. To illustrate the two types of behavior,
Fig. 3c, d show the evolution of 93(t) of two initially nearby

trajectories. If σ < 1, as is the case near P1, the two trajec-
tories are virtually coincident (Fig. 3c). If, on the contrary,
σ > 1, as is the case near P2, the two aperiodic signals lose
their coherence (Fig. 3d). Finally, it is worth noting that, for
simulations with sufficiently small γ (not shown), σ < 1 ev-
erywhere.

A different and useful way of looking at these two types of
behavior is to analyze the corresponding mixing properties of
the flow in the model’s phase space. To do so, one can make
use of the system’s entropy (Shannon, 1948):

Sϑ (t)=−

N∑
k=1

pk lnpk. (6)

Here 0 is decomposed into a regular grid of N square cells
of width19 (with N = 15000 and19 = 2, so that the grid
corresponds to that of the initial data used in our ensemble
simulations) and pk(t) is the probability of localization in the
kth cell at time t of the trajectories emanating at time t = 0
from a given subset ϑ ⊂ 0.

Figure 4a shows the intersection with the (91,93) plane at
t = 300 years of 15 000 trajectories originating from the box
ϑ1 that coincides with the19×19 grid cell centered at P1;
the red dots correspond to the case γ = 1.1 and the green dots
to γ = 1.35. Figure 4b shows Sϑ1 for the two cases; note that
Sϑ1(0)= 0 since all the initial states lie in the single cell ϑ1,
and thus p1 = 1. The entropy of the periodic case γ = 1.1,
characterized by σ < 1, oscillates between 0 and 1, with the
final evolution limited to virtually a single cell over the limit
cycle; the latter cell is enclosed in the red circle of Fig. 4a.

In the chaotic case γ = 1.35, σ ≤ 1 for 43 % of the points
contained in ϑ1, while σ > 1 for the remaining points. The
evolution of the former leads to the localized blue dots in
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Figure 4. Chaotic and nonchaotic behavior of the autonomous model, for time-independent forcing intensity γ = 1.1 (red) and γ = 1.35
(green), respectively. Typical behavior of (a, c) the trajectories in the model’s phase plane (91,93) and (b, d) of the model’s entropy Sϑ (t).
(a) Intersection with the (91,93) plane at t = 300 years of 15 000 trajectories emanating from the small square box ϑ1 of width 19 = 2
and centered at the point P1 (black dot), for γ = 1.1 (red dots, enclosed in the red circle) and for γ = 1.35 (green dots); for the blue dots
see the text. (b) Time evolution of the corresponding entropy Sϑ1 for γ = 1.1 (red line) and γ = 1.35 (green line). (c, d) Same as panels (a)
and (b), but for the initial box ϑ2 centered at P2, likewise shown as a black dot in panel (c). For the evolution of the points contained at
t = 300 years in the black rectangle of panel (c), see Fig. 5 below.

Fig. 4a while the evolution of the latter leads to the green
dots scattered over the strange attractor. The green line of
Fig. 4b, giving Sϑ1 computed with all the trajectories, shows
the gradual spreading of the initial points with σ > 1.

Figure 4c, d show the same quantities for the initial19×
19 box ϑ2 centered at P2. The chaotic case is similar to that
for ϑ1, but with a greater entropy; however, the periodic case
differs in that now σ > 1 – cf. Fig. 2c. Figure 4c shows that
the asymptotic evolution of the very small ϑ2 covers a limited
but significant part of the limit cycle, as seen by comparing
this figure with Fig. 1b; the corresponding entropy in Fig. 4d
eventually oscillates periodically between the values Sϑ2 ∼

2.2–3.7. Figure 4 thus demonstrates clearly the usefulness of
the metric σ in characterizing subsets of 0 and the effect of
the control parameter γ .

Finally, it is worth stressing that, since the forcing is con-
stant, the range of variability of the entropy in the chaotic

case with σ > 1 must tend to zero as the number of points
tends to infinity. This tendency is clearly illustrated by the
green line of Fig. 4d. However, the range of variability of Sϑ1

in the chaotic case (Fig. 4b) is still quite large after 400 years
because, as pointed out above, the number of points with
σ > 1 contained in ϑ1 is relatively small.

3.2 An apparent paradox

We conclude the analysis of the autonomous system by dis-
cussing an apparent paradox. We have just seen that, in re-
gions of 0 where σ > 1, the trajectories for γ = 1.1 exhibit
sensitive phase dependence on initial data, as shown, for in-
stance, by Fig. 3b, by the red dots in Fig. 4c and by the red
curve in Fig. 4d. Sensitive dependence on initial data is usu-
ally associated with chaotic dynamics, but in this case the
dynamics are periodic.
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Figure 5. Chaotic and nonchaotic behavior of the autonomous model. (a) Evolution of the 1774 points (red dots) contained at t = 300 years
in the black rectangle of Fig. 4c for γ = 1.1; the attractor is illustrated by the entire set of 15 000 points, shown in light red. (b) Same but for
the 135 points (green dots) that lie within the same rectangle for γ = 1.35; in this case, the attractor composed of the 15 000 points is shown
in light green. Due to the chaotic nature of the dynamics in this case, only one snapshot, after 25 years, is drawn.

This paradox is resolved by noting that such sensitivity
concerns only the phase of the periodic trajectories, as al-
ready noticed in the previous subsection and, in addition, it
occurs only if the initial data lie outside the attractor, e.g,
elsewhere on 0; on the attractor, this phase sensitivity disap-
pears, as we will show below. On the contrary, in the chaotic
case γ = 1.35, the sensitivity to initial data for trajectories
with σ > 1 always holds, off the attractor as well as on it.
This is in excellent agreement with the chaotic character of
the dynamics in the latter case.

We must show, therefore, that the trajectories are stable
for γ = 1.1 and unstable for γ = 1.35, once they have set-
tled onto the attractor. This distinction between the two cases
can already be inferred from Figs. 3 and 4 but it is worth in-
vestigating the issue in greater detail. The usual quantitative
approach relies on the computation of the leading finite-time
Lyapunov exponent λ of each trajectory (e.g., Ott, 2002).

The results (not shown) are consistent with the assumption
above, but the exponents are highly dependent on the time Tλ
over which the finite-time exponents are computed, and on
the amplitude of the perturbation superimposed on the refer-
ence trajectory at each time step Tλ. Moreover, the assump-
tion of exponential divergence of chaotic trajectories is not
fully met in our highly nonlinear framework, so that the tran-
sition between periodic and chaotic dynamics may actually
occur at a value of λ that is not exactly equal to 0. A quali-
tative diagnostic method is instead illustrated in Fig. 5, and
furthermore we propose an alternative quantitative method in
Sect. 4.

Let us consider the points lying in the black rectangle
shown in Fig. 4c at t = 300 years: the corresponding evo-
lution at four subsequent time instants, T1 = 25 years, is
shown in Fig. 5a for γ = 1.1 (red dots). Note that the pe-

riod of the orbits on the attractor is T∗p = 14.08 years, i.e.,
T1 > T∗p.

The stability of the trajectories under consideration is
clearly demonstrated in Fig. 5a by the compact form and lim-
ited extent of the cluster: indeed, these points that start from
t = 300 years evolve anticlockwise around the attractor, cov-
ering it roughly 6 times during the interval 4T1 = 100 years
that separates the first snapshot from the last one. On the con-
trary, Fig. 5b shows that for γ = 1.35 (green dots) the com-
pact form of the initial cluster is lost already after a single
25-year lapse of time. The trajectories will thus soon be scat-
tered over the strange attractor, due to their divergence.

In conclusion, our autonomous system becomes chaotic
for sufficiently large values of γ , e.g., for γ = 1.35. The sys-
tem’s periodic regime spans a range of γ that includes the
bifurcation at γ = 1, which is apparent in Fig. 1a.

Moreover, we have shown that, when γ = 1.1, regions of
0 exist within which the mean normalized distance σ be-
tween two initially nearby trajectories is larger than unity;
see again Fig. 2c. In this case, despite the attractor’s being
a limit cycle, the trajectories leaving from such regions of
phase space experience sensitive phase dependence on the
initial data. Although sensitive dependence is typically asso-
ciated with chaotic systems, this sensitivity is not in contra-
diction with the periodic character of the solutions: as a mat-
ter of fact, the trajectories under discussion are stable and the
sensitive dependence disappears once the trajectories have
converged onto the attractor.

The existence of regions with σ > 1 for an autonomous
periodic system is an important feature for the transition to
chaos when the system is subjected to time-dependent forc-
ing: this issue will be discussed in the next section. Besides,
the new diagnostic method introduced in Sect. 4.2 to help an-
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alyze transition to chaos in the nonautonomous case will be
applied in Sect. 5.1 to the autonomous case.

4 The periodically forced system

For the idealized double-gyre model governed by Eq. (2),
we have seen that the autonomous system given by ε = 0 in
Eq. (3) exhibits a limit cycle when γ = 1.1; this limit cycle
corresponds to the large-amplitude relaxation oscillation of
Fig. 1b. However, Pierini (2014) showed that, when the same
model, with the same value of γ , is subjected to periodic
forcing with ε = 0.2 and Tp = 30 years, it exhibits chaotic,
cyclostationary and cycloergodic behavior; see Figs. 2 and
3 therein and the related discussion. To understand the tran-
sition to deterministically chaotic behavior induced by the
forcing, we will now apply in Sect 4.1 the methodology
used in Sect. 3 to the attractors corresponding to γ = 1.1
and Tp = 30 years across the intervening parameter range
0≤ ε ≤ 0.2. In Sect. 4.2, the transition to chaos induced by
the periodic forcing will be analyzed in greater detail through
an additional method here developed explicitly for this pur-
pose.

We know from the rigorous proof of Pierini et al. (2016,
Appendix A) that our idealized ocean model possesses a
global PBA, in the general case of time-dependent forc-
ing, whether periodic or aperiodic. PBAs are, in fact, time-
dependent mathematical objects that characterize the asymp-
totic behavior of a nonautonomous dissipative dynamical
system (e.g., Chekroun et al., 2018, Fig. 2).

It is common, though, in the literature of periodically
forced dynamical systems to study the asymptotic behavior
of such a system by an iterated stroboscopic map {u(t)→
u(t + T )}, where u is the variable and T is the period. In the
particular case in which the system’s driver is periodic, so is
the PBA; see Sect. 2.3.2 of Chekroun et al. (2018) for a rig-
orous proof. In contradistinction, a “normal” – i.e., forward
rather than pullback – attractor visualized in the embedded
space (u(t),u(t + T )) and built by using points along a long
trajectory {u(t) : t0 ≤ t ≤ t0+ T } is static and therefore con-
tains less information than the corresponding PBA, no mat-
ter how long the interval T may be. Furthermore, PBAs built
from ensembles of initial data allow us to visualize in one
single picture the coexistence of different types of dynamical
behavior in terms of disjoint PBAs; see, for instance, Fig. A2
in Appendix A herein. Besides, the PBA framework is use-
ful for the visualization of fractal structures that arise when
noise is superimposed to the periodic forcing. A stroboscopic
map analysis may not easily reveal such fractal features; see
Chekroun et al. (2011), as well as Sect. 3.4 of Chekroun et al.
(2018).

4.1 The pullback attractors of the forced system

For all the above reasons, we now present the PBAs of our
periodically forced ocean model. As already just mentioned,
the PBAs of a periodically forced dissipative system are al-
ways periodic, but the system can be either chaotic or non-
chaotic, depending on its parameter values. For the sake of
simplicity, we will refer below to the PBAs of a chaotic and
nonchaotic system, abbreviated as CPBAs and NPBAs, re-
spectively.

For the autonomous case, the time evolution of P93(t) and
the map of σ(X,Y ) – already shown in Fig. 2a and c, respec-
tively – are again plotted in Fig. 6a and e for the sake of com-
parison. Figure 6d, h correspond to the reference CPBA stud-
ied by Pierini (2014). Note also that one of the two reference
cases studied by Pierini et al. (2016) has the same values of
γ and ε, but the latter parameter was multiplied by the aperi-
odic forcing shown in Fig. 17 below. Two intermediate cases
that correspond to ε = 0.05 and ε = 0.1 are shown in Fig. 6b,
f and c, g, respectively. In Sect. 4.2, we will show in greater
detail that the transition to chaotic behavior occurs abruptly,
when crossing a critical value εc that lies between the two
intermediate values of 0.05 and 0.1; here we merely provide
some qualitative arguments showing that, in fact, the case
ε = 0.05 is still periodic, while the case ε = 0.1 is chaotic.

Before proceeding with the analysis of the results in Fig. 6,
we recall that chaotic systems subjected to periodic forc-
ing can be studied either by ensembles of trajectories – as
done herein – or by stroboscopic averages using a single
long trajectory, provided the assumption of cycloergodicity
holds (e.g., Boyles and Gardner, 1983): the latter result ex-
tends the classical ergodicity property valid for strange at-
tractors of autonomous systems (e.g., Eckmann and Ruelle,
1985) to chaotic, periodically forced systems. An example of
this equivalence is shown in Fig. 3c, d of Pierini (2014) for
the present model and for the parameter values correspond-
ing to the P93(t) and σ(X,Y ) plotted in Fig. 6d, h herein
(obviously, the trajectory used in that example was derived
from a region with σ > 1). However, the existence of regions
with σ61, as well as with σ > 1, in the two chaotic cases
(Fig. 6g, h) shows that the cycloergodicity assumption fails to
hold for our idealized ocean model. Our system must, there-
fore, be investigated using the ensemble approach, which we
pursue throughout this paper. In fact, had we only used the
stroboscopic map method, we would never have discovered
the existence of two types of local attractors, namely CPBAs
and NPBAs, in our model.

Figure 7 provides further information on the four cases il-
lustrated in Fig. 6. In Fig. 7a–d, the magenta dots represent
the intersection with the (91,93) plane at t = 400 years of
15 000 trajectories, whose initial points (in blue) are evenly
distributed in 0 at t = 0; in addition, in Fig. 7e–h, the cor-
responding entropy Sϑ=0 is plotted as a function of time,
along with the number no of cells that are occupied by at
least one point. Clearly, the structure of the PBA snapshot
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Figure 6. Transition from a periodic to a chaotic PBA as the amplitude ε of the periodic forcing in Eq. (3) increases. (a–d) Time evolution
of P93 and (e–h) maps of σ in the (91,93) plane for γ = 1.1, Tp = 30 years and ε = 0,0.05,0.1 and 0.2, respectively. Panels (d) and (h)
correspond to the reference case studied by Pierini (2014).

Figure 7. Intersection with the (91,93) plane at t = 400 years (magenta dots) of 15 000 trajectories emanating from 0 at t = 0 for γ =
1.1 and Tp = 30 years. The complete set of the initial points covering 0 is in blue. (a) ε = 0, (b) 0.05, (c) 0.10, and (d) 0.2. (e–g) The
corresponding entropy Sϑ2 is plotted, along with the number no of occupied cells.

in Fig. 7b, for ε = 0.05, is very similar to that of the au-
tonomous case in Figs. 1b and 7a, while the PBA snapshots
plotted at t = 400 years – for ε = 0.1 and 0.2 in Fig. 7c and
d, respectively – are quite different.

To understand this difference better, we focused in Fig. 8
on the subdomain ϑ2 of 0 that was defined in Fig. 4c and for
which σ > 1. The autonomous case has already been ana-
lyzed in Sect. 3.1: in fact, Fig. 8a, e are equivalent to Fig. 4c,

d. In the case of ε = 0.05, the same behavior is found, i.e.,
the sensitivity to initial data leads to only a compact subset
of the attractor being covered; this implies the periodicity of
the trajectories.

On the contrary, for ε = 0.1 the intersection of the trajec-
tories at t = 400 years with the (91,93) plane, shown by
the magenta dots in Fig. 8c, is virtually indistinguishable
from the one that appears in Fig. 7c, when the initial data
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Figure 8. Same as Fig. 7, but for 15 000 trajectories emanating at t = 0 from the small rectangle ϑ2 of width 19 = 2 centered at P2.

are selected in the whole of 0: this excellent match is an un-
equivocal sign of the mixing property of chaotic dynamics,
as already discussed for the autonomous case γ = 1.35 in
connection with Figs. 4 and 5. That the same property holds
for ε = 0.2 in Fig. 8d is not surprising, since Pierini (2014)
already recognized the model’s chaotic behavior for this pa-
rameter value.

Finally, it is instructive to visualize 93(t) for a couple of
trajectories that are very close at t = 0, as done in Fig. 3
for the autonomous case. Figure 9 shows 93(t) for the four
cases of Figs. 6–8 and for trajectories that emerge from ϑ2. In
Fig. 9a, b the two trajectories are periodic, but with a phase
difference. In the two chaotic cases of ε = 0.1, 0.2 in Fig. 9c,
d, both trajectories are clearly aperiodic. In Fig. 9c, though,
i.e., in the case that is closer to the transition, this aperiod-
icity is merely associated with a temporary shift in phase
of an otherwise periodic signal within the intervals t ' 40–
120 years and t ' 360–400 years.

The intermittent behavior seen in Fig. 9c appears – from
many simulations that are not shown here – to be typical of
chaotic solutions near the transition point εc and suggests a
possible mechanism through which chaos is induced by an
external periodic forcing. For values of ε just past εc, the
model still tends to behave periodically, but the external forc-
ing is sufficiently strong to entrain a trajectory occasionally
into a nearby region, where the periodicity is preserved but
the phase differs by a finite amount. Since these shifts are
very sensitive to the initial data, the result is a chaotic tra-
jectory characterized by separate intervals of periodic oscil-
lations with a different phase. This mechanism also explains
why the transition to chaos leads to a notable increase in the

measure of the regions in 0 where sensitive dependence to
initial data occurs; such an increase is visually obvious when
comparing Fig. 6e, f with Fig. 6g, h. As ε increases further,
the duration of the intervals of constant phase decreases, and
the oscillations tend to become more genuinely aperiodic, as
seen in Fig. 9d.

This behavior is similar to the intermittency found in au-
tonomous dissipative systems (e.g., Manneville and Pomeau,
1979; Pomeau and Manneville, 1980), in which a trajectory
switches back and forth from periodic to aperiodic oscilla-
tions provided a certain control parameter of the system –
e.g., the amplitude of the steady, time-independent forcing
– crosses a given threshold. In our nonautonomous system,
the amplitude of the periodic forcing ε plays a similar role.
This transition to chaos induced by time-dependent forcing
appears, therefore, to be directly linked to the existence of
regions in phase space in which sensitive dependence to ini-
tial data occurs in the limit of periodic solutions. Thus, the
chaotic behavior merely due to the time-dependent nature of
the forcing can be traced back to the apparently paradoxical
property of the autonomous system that was emphasized in
Sect. 3.2. This striking observation deserves to be analyzed
in greater depth in future studies.

4.2 Transition to chaos studied by a cross-correlation
method

Recognizing qualitatively whether a PBA is chaotic or not is
relatively simple; e.g., this can be done through the heuristic
arguments illustrated in Figs. 4 and 5 and through those out-
lined in the previous subsection and illustrated in Figs. 6–9.
But how does one characterize the transition from periodic to
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Figure 9. Increasing instability of trajectories as ε increases. Time evolution of 93(t) for the trajectory initialized at the point P2 (red line)
and at a nearby point (blue line) for γ = 1.1, Tp = 30 years, and (a–d) ε = 0,0.05,0.1 and 0.2.

chaotic dynamics as a control parameter, such as the ampli-
tude ε of the periodic forcing, changes?

We have already discussed in Sect. 3.1 the limitations of
using the mean finite-time Lyapunov exponents. Here we
propose a new, simple and robust method that is particularly
useful in our periodic-forcing case, but can be applied also
to any autonomous system and even to aperiodically forced
systems; the latter situations will be addressed in Sect. 5. In
Sects. 3 and 4.1, we have relied on the mixing properties of
chaotic dynamics, as measured by the system’s entropy Sϑ ,
to recognize the occurrence of chaotic behavior. Now we rely
on the emergence of aperiodic signals from a subset of 0; this
subset will necessarily be contained in the region where sen-
sitive dependence on initial data occurs, i.e., where σ > 1.

The most obvious approach would be to compute the
power spectrum of each trajectory. Periodic signals can, how-
ever, be quite complex, as seen, for instance, in Fig. 9a, b;
this complexity makes it quite difficult to identify a parame-
ter whose value will distinguish, accurately and reliably, be-
tween periodic and chaotic dynamics, based solely on the
Fourier spectra of a finite number of finite-length trajecto-
ries.

We propose a simpler alternative method that takes advan-
tage of the ensemble simulations carried out to obtain the
PBAs numerically. Let 93 and ζ3 be the mean and root-
mean square values of 93(X,Y, t), and consider the cen-
tered and normalized anomaly time series 9̃3(X,Y, t) and
9̃3
(
X′,Y ′, t

)
, of 93, with

9̃3 =
93−93

ζ3
, (7)

where (X,Y ) and
(
X′,Y ′

)
are two points in 0 that are near

to each other, and from which these two time series emerge

at t = 0. We can then compute the cross-correlation between
the two signals, after removing the initial transient, as

c(X,Y,τ )=

1
T∗− 2T

T∗−T∫
T

9̃3 (X,Y, t)9̃3(X
′,Y ′, t + τ)dt; (8)

here T∗ = 400 years is again the maximum integration time,
and −T ≤ τ ≤ T , while T = 50 years; once more, the fol-
lowing results are independent of T , provided it is suffi-
ciently larger than the typical timescale of the phenomenon.
Note also that, in the above definition, we have dropped the
dependence of c on (X′,Y ′) for the sake of conciseness.

Now, if σ < 1, the two signals are periodic and virtually
coincident, as seen, for instance, in Fig. 3a, c. Hence, defin-
ing the maximal cross-correlation by

2(X,Y )=max {c (X,Y,τ ) : τ ∈ [−T ,T ]} , (9)

one will have 2(X,Y )∼= 1, with 2 being attained at τ = 0.
However, if σ > 1, there are two possibilities:

– either the PBA is not chaotic, in which case all cou-
ples (X,Y ) and (X′,Y ′) yield two periodic and virtu-
ally equal signals, apart from a finite phase difference,
as seen, for instance, in Figs. 3b and 9a, b; in this case,
again, 2∼= 1, which will now occur at some lag τ 6= 0
that depends on the phase difference;

– or the PBA is chaotic, in which case all couples yield
two aperiodic and significantly different signals, as
seen, for instance, in Figs. 3d and 9c, d; in this case,
2 will be substantially less than unity.
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This alternative is illustrated in Fig. 10 for the four cou-
ples of trajectories plotted in Fig. 9a–d, all of which were
initialized in ϑ2, where σ > 1.

It is then useful to analyze the maps of the parameter 2.
Figure 11a–d show 2 for the four cases of Figs. 6–9. In the
two cases that we have already identified as nonchaotic, 2
varies within a range of values [0.95,1.1] that lies very close
to unity, as expected; see Fig. 11a, b. There is only a small
neighborhood of P0 = (−16,−83) in which2 is very small:
this is because P0 in the autonomous case is a fixed point;
see Fig. 12.

The two cases that we have identified as chaotic appear
here as Fig. 11c, d, and in them2 exhibits in fact smaller val-
ues. These values lie in the range [0.2,0.8] for a large subset
of the domain, where σ > 1, as shown in Fig. 6g, h. Regions
in which σ > 1 but 2' 1 are present as well, but the corre-
sponding trajectories are nonetheless unstable once they have
converged onto the PBA, because they will always pass suffi-
ciently near trajectories that are chaotic, thanks to the mixing
properties of the latter.

In summary, if2∼ 1 everywhere (yellow colors) we have
an NPBA, whereas if 2 yields values that are sufficiently
smaller than unity (grey colors) then we have a CPBA.

To summarize in a clear and simple way the information
provided by the values of both σ and 2, we introduce the
integer-valued parameter 8, defined as follows:

8(X,Y )=


1 if σ61 (yellow),

2 if σ > 1 and 2>20 (green),
3 if σ > 1 and 2620 (red).

(10)

Here 20 is a threshold value and 8(X,Y ) is plotted in
Fig. 11e–h for 20 = 0.8.

As an example of the usefulness of 8, let us note that
the σ maps in Fig. 6f and g are fairly similar, except for
the more extended warm-color region, where σ > 1, in the
second map. Recall, however, that the meaning of σ > 1 is
profoundly different if the system is chaotic, in which case
mixing is present, as opposed to when it is not, in which case
sensitive dependence to initial data concerns only the phase
of the signal and is not accompanied by mixing. This ambi-
guity is resolved by the use of the step function8: if ε = 0.05
(Fig. 11f), sensitive dependence to initial data, i.e., σ > 1,
yields the value of8= 2 (green regions), since2' 1, which
tells us that the system is not chaotic. On the contrary, if
ε = 0.1 (Fig. 11g), regions with8= 2 (in red) appear within
the green regions: this implies low 2 values and therefore
chaos.

We conclude by analyzing the transition from NPBAs to
CPBAs via a suitable function of the control parameter ε:
this metric is provided by the average value 〈2〉0 of 2 over
0. The graph of 〈2〉0(ε) in Fig. 13 is obtained by performing
many ensemble simulations of system trajectories with many
distinct values of ε; the latter values are chosen to lie closer
to each other, where the variation in 〈2〉0(ε) is stronger. An

e = 0.00,  0.05,  0.10,  0.20

C
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Figure 10. Cross-correlation c(τ ) between the two initially nearby
trajectories shown in Fig. 9a–d, computed for the centered and nor-
malized anomalies 9̃3, according to Eq. (7), for ε = 0 (red line),
0.05 (orange line), 0.1 (green line) and 0.2 (blue line).

abrupt transition from NPBAs, with 〈2〉0 ' 1, to CPBAs oc-
curs at εc ∼= 0.09. Many additional analyses (not shown) for
values just below and above εc confirm that this is in fact the
critical value beyond which chaos sets in.

5 Further applications of cross-correlation diagnostics

5.1 Application to the autonomous system

The diagnostic method proposed in Sect. 4.2 to monitor the
transition from NPBAs to CPBAs in periodically forced sys-
tems relies on two properties: (i) in an NPBA all trajecto-
ries are periodic, and (ii) in a CPBA diverging aperiodic tra-
jectories emerge from a subset of 0, in which necessarily
σ > 1. Thus, the same cross-correlation-based method can
obviously be applied to an autonomous system as well. The
method’s application to the autonomous model studied in
Sect. 3 will shed new light on the periodic vs. chaotic char-
acter of its solutions.

The graph in Fig. 14 shows 〈2〉0(γ ) and is obtained, like
that of Fig. 13, by performing many ensemble simulations,
each with a different value of γ , rather than ε, which equals
zero in the present case. The first thing to notice is the sud-
den drop of 〈2〉0 at γ = γc = 1, where a global bifurcation
separates small-amplitude limit cycles from large-amplitude
relaxation oscillations, as shown in Pierini (2011) and in
Sect. 3.1 here. In addition, Pierini (2012) investigated the
stochastic version of this deterministic tipping point in the
case of random forcing.

The chaotic nature of the attractor for γc is illustrated
in Fig. 15. For γ = 0.99, the 93 time series exhibits the
typical small-amplitude, purely periodic behavior studied in
Sect. 3.1, while for γ = 1 both small- and large-amplitude
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Figure 11. PBA diagnostics for γ = 1.1 and Tp = 30 years, with ε = 0,0.05,0.1 and 0.2, respectively, for the two sets of four maps. Upper-
row panels (a)–(d) show the field of 2(X,Y ) in the (91,93) plane, as defined in Eq. (9); the color bar for the 2(X,Y ) values is shown to
the right of each panel, and it extends over the range [0.1,1.12]. Lower-row panels (e)–(h) show the field of 8(X,Y ) in the (91,93) plane,
as defined in Eq. 10, with the threshold value 20 = 0.8; here 8= 1 is colored yellow, 8=2 is green and 8= 3 is red. The corresponding
maps of σ(X,Y ) appear in Fig. 6e–h, respectively.

Figure 12. Fixed point P0 of the autonomous case, with ε = 0. Time
evolution of 93 for the trajectory initialized at P0 = (−16,−83)
(blue line) and at a nearby point (solid red line) for γ = 1.1 and
Tp = 30 years.

oscillations occur irregularly in the same time series. The be-
havior at γ = 1.01 illustrates the return to more regular be-
havior.

Thus, chaotic dynamics occurring in an extremely re-
stricted γ range separates two different types of limit cycles.
Figure 16 shows this dramatic transition in terms of σ : the
chaotic nature of the flow for γc = 1 is such that the warm-
colored regions in which σ > 1 overwhelm the cold-colored
regions, as in Fig. 2d, where γ = 1.35.

For γ > 1, the system is not chaotic – except for limited
γ intervals centered at γ ' 1.25 and γ ' 1.335 – until a

Figure 13. Transition from periodic to chaotic behavior, illustrated
by the metric 〈2〉0 plotted vs. the amplitude ε of the periodic forc-
ing in Eq. (3); γ = 1.1 and Tp = 30 years.

new abrupt drop of 〈2〉0 at γ = γ0 = 1.3475, shown by a
dashed black line in Fig. 14. This drop signals the presence
of chaotic attractors beyond γ0; in particular, the chaotic case
γ = 1.35, shown by the solid green line and discussed in
Sect. 3, lies just after this transition. It is worth noting that
large fluctuations dominate the chaotic regime.
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Figure 14. Same as Fig. 13, but for the autonomous model with
ε = 0 and the amplitude γ of the time-independent forcing on the
abscissa. The vertical red and green lines denote the periodic and
the chaotic cases, respectively, that were analyzed in Sect. 3.1; see
again Fig. 1. Please see the text for the interpretation of the dashed
lines corresponding to γc = 1 and γ0 = 1.3475.

5.2 Application to an aperiodically forced system

Our cross-correlation diagnostics have been shown to ap-
ply to both periodically forced and autonomous systems. Its
validity, however, is even more general, since it extends to
a large class of aperiodically forced systems as well. We
choose the model setup of Pierini et al. (2016) to illustrate
the latter possibility. A thorough analysis of this application
is beyond the scope of the present study: we will therefore
limit ourselves to analyzing the basic aspects of the problem
and leave the details for a future investigation.

Pierini et al. (2016) considered the same system – gov-
erned by Eq. (2), and within the same parameter regime
adopted here and in Pierini (2011). The forcing, though, was
aperiodic and given by the following:

G(t)= γ
[
1+ ε′f (t)

]
, (11)

where ε′ > 0 is a dimensionless coefficient and f (t) is a nor-
malized, fixed realization of an Ornstein–Uhlenbeck process
that has been smoothed to resemble multi-annual wind-stress
forcing of the midlatitude oceans’ double-gyre circulation.
Figure 17 shows G(t) for γ = 1 and ε′ = 0.2.

Figure 18 shows the evolution of two initially nearby tra-
jectories emerging from P2, along with the corresponding
cross-correlation, for γ = 1.1, with ε′ = 0.05 in panels (a–
b) and ε′ = 0.20 in panels (c–d); both cases have σ > 1 and
the corresponding time series of P93 are plotted in Fig. 4h, j
of Pierini et al. (2016). The case ε′ = 0.2 corresponds to the
CPBA analyzed in detail by Pierini et al. (2016). The chaotic
character of the solution is clearly visible from Fig. 18c;

the cross-correlation between the two signals is plotted in
Fig. 18d and it is accordingly small.

On the contrary, the case ε′ = 0.05 corresponds to an
NPBA: the two signals in Fig. 18a develop a large phase dif-
ference after the initial transient, but are virtually identical
and remain coherent at all times. Now, unlike in Figs. 3b and
9a, b, the two signals are not periodic because they are mod-
ulated by the aperiodic forcing, but this is irrelevant; in fact,
the nonchaotic character of the solution can still be high-
lighted by the corresponding cross-correlation in Fig. 18b,
whose maximum value is 2' 1, like in the autonomous and
periodically forced case. Obviously, this is possible because
the period of the modulated relaxation oscillation is much
smaller than the timescale of the forcing; this is in fact the
only condition required for the applicability of this diagnos-
tic method to aperiodically forced systems.

We can therefore conclude that the parameter 〈2〉0 can be
a valuable tool for monitoring the onset of chaos in aperiod-
ically forced systems as well. For example, this diagnostic
method can be applied to study the onset of chaos in systems
that possess a drift mimicking global warming and other cli-
mate change scenarios (as done, for instance, in Drótos et al.,
2015).

6 Summary and conclusions

In this paper, we studied the transition from nonchaotic
to chaotic PBAs in a nonautonomous system whose au-
tonomous limit is nonchaotic, and in which, therefore, chaos
is induced by the periodic forcing. The illustrative exam-
ple chosen for this general problem was a low-order quasi-
geostrophic model of the midlatitude wind-driven ocean cir-
culation, subject to periodic forcing. The model was de-
scribed and connected with previous work in Sect. 2.

We first investigated, in Sect. 3, the autonomous system,
following up on the work of Pierini (2011), who obtained its
governing equations and analyzed their solutions. Here, en-
semble simulations based on a large number of initial data
and the calculation of the system’s entropy allowed us to de-
termine novel and interesting features of the system subject
to steady forcing.

To do so, we used the metric σ that was introduced by
Pierini et al. (2016) and measures the time average of the
distance between two trajectories that are very close at t = 0
on a subset 0 of phase space. The analysis based on this
metric yielded regions in 0 with σ values that can be ei-
ther larger or less than unity. The spatial structure of these
regions (cf. Fig. 2c, d here) is very similar to that of the
nonautonomous case investigated by Pierini et al. (2016), as
seen in Fig. 6 therein. This similarity suggests that the nonau-
tonomous behavior of a dynamical system is profoundly in-
fluenced by the convergence properties of trajectories initial-
ized off the attractor in the autonomous case; this finding, in
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Figure 15. Critical transition in the autonomous system at γc. Panels (a) and (d), (b) and (e), and (c) and (f) correspond to γ = 0.99,1.0 and
1.01, respectively. (a–c) Time evolution of 93 for the trajectory initialized at P1 (red line) and at a nearby point (blue line); (d–f) same but
for trajectories initialized at P2.

Figure 16. Critical transition in the autonomous system at γc, illustrated by maps of the mean normalized distance σ in the (91,93) plane
for γ = 0.99, 1.0 and 1.01.

Figure 17. Aperiodic forcing G(t)/γ of the idealized ocean model
– defined by Eq. (11) herein, and plotted using the value ε′ = 0.2,
as adopted in Pierini et al. (2016).

turn, implies that ensemble simulations are very helpful in
studying said properties.

Next we investigated, still in the autonomous case, the ap-
parent paradox of regions with σ > 1 coexisting in the peri-

odic regime of γ = 1.1 with the expected regions of σ < 1. A
large number of trajectories emanating from the small square
box of Fig. 4c, for which σ > 1, evolves into the extended red
line shown in the same figure at a given time, t = 300 years:
this line belongs to the periodic attractor shown in Fig. 1b
and the entropy evolution along it oscillates periodically
(cf. Fig. 4d); but it is clearly distinct from the chaotic attrac-
tor apparent as the green cloud of points in the same figure
panel. Further evidence for the stability of the trajectories in
this periodic case with σ > 1 is provided by Fig. 5a.

We conclude that sensitive phase dependence on initial
data in a periodic regime may be present if the trajectories are
initialized off the attractor, but that it disappears once the tra-
jectories have converged onto the attractor. Clearly, generic
sensitive dependence on initial data is, therefore, a necessary
but not sufficient condition for chaotic behavior.
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Figure 18. Role of the cross-correlation diagnostics in characterizing chaotic behavior for an aperiodically forced system, given by Eqs. (2)
and (11); γ = 1.1. (a) Time evolution of 93 for ε′ = 0.05 in Eq. (11) and (b) corresponding cross-correlation. (c, d) Same as panels (a) and
(b) but for ε′ = 0.2. The trajectories initialized at P2 are in red and those initialized at a nearby point are in blue.

In Sect. 4, we studied the onset of chaos in the system
subject to the periodic forcing given by Eq. (3) in the case
of γ = 1.1, in which the system is nonchaotic in the au-
tonomous limit, so that chaos is induced by the periodic
forcing. The PBAs were analyzed at first for four differ-
ent sinusoidal-forcing amplitudes, with ε = 0,0.05,0.10 and
0.2, while using the same γ = 1.1 and Tp = 30 years.

We found that the first two cases, namely ε = 0 and 0.05,
are nonchaotic, while the other two, namely ε = 0.10 and
0.20, are chaotic. A large number of trajectories emanating
from the small square box where σ > 1 in Fig. 8a–d evolves
– depending on the value of ε – into two very different fixed-
instant subsets of the model’s PBA, with the snapshot taken
at t = 400 years, i.e., after convergence of the trajectories to
the PBA. In the first two cases, this snapshot is a curved-line
segment that belongs to the PBA, while in the latter two cases
it covers the whole PBA, due to the typical mixing property
of chaos.

An analysis of the trajectories, as shown in Fig. 9, for in-
stance, indicates that the transition to chaos occurs via an
intermittent emergence of periodic oscillations with different
phases; see again Fig. 9c. We have shown that, for values of
ε in the chaotic regime just above the transition, the periodic
character of the system is still predominant, but the exter-
nal forcing is now sufficiently strong to cause a trajectory’s
occasionally shifting to a phase space region in which a dif-
ferent phase prevails: since the shifts are very sensitive to the
initial data, the result is a chaotic trajectory characterized by
irregular jumps of the oscillatory solutions between distinct
phases.

In Sect. 4.2, we introduced a novel diagnostic method for
the study of the transition between nonchaotic and chaotic
behavior as the amplitude ε of the periodic forcing increases.
The method’s basic idea is that in a nonchaotic regime any
couple of initially nearby trajectories emerging from 0 re-
main coherent at all times, while in a chaotic regime aperi-
odic diverging trajectories emerge from a subset of 0. Hence,
a systematic recognition of the character of all the trajectories
allows one to diagnose which of these two types of behavior
occurs or whether the two actually coexist.

A simple and robust way to do this is to compute the cross-
correlation c(X,Y,X′,Y ′,τ ) at lag τ between two initially
nearby trajectories started at (X,Y ) and (X′,Y ′) in 0, then
compute its maximum value2(X,Y ) over τ . If2(X,Y )' 1
everywhere in 0, then the system is nonchaotic and is there-
fore periodic under periodic forcing; on the contrary, if 2
is appreciably smaller than unity in some subset of 0, the
system is chaotic. The diagram of the average 〈2〉0 (ε) of
2(X,Y ) over 0, as plotted in Fig. 13, reveals an abrupt tran-
sition to chaos at εc ' 0.09.

This cross-correlation-based method has also been applied
to the autonomous system, in which the conditions required
for the periodically forced case do apply as well. The di-
agram of 〈2〉0 (γ ) in Fig. 14 reveals that chaotic dynam-
ics occur at first within an extremely restricted range cen-
tered at the global bifurcation point γ = γc = 1, which sep-
arates small-amplitude, fairly smooth oscillations below γc
from large-amplitude relaxation oscillations above it. A con-
siderably broader range of chaotic behavior occurs in the
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autonomous case for values of γ greater than a threshold
γ0 = 1.3475.

We have then applied the cross-correlation-based method
to the aperiodically forced system studied by Pierini et al.
(2016). Our results show that, in fact, this method can be
applied to systems subject to aperiodic forcing when the sys-
tem’s intrinsic periodicity and the characteristic timescale of
the external forcing are sufficiently well separated from each
other, which is the case in Pierini et al. (2016); cf. Fig. 17
here. Once more, the cross-correlations in Fig. 18c, d agree
remarkably well with the character of the model trajectories
in Fig. 18a, b.

Finally, the coexistence of local PBAs with chaotic vs.
nonchaotic behavior within a global PBA – as first described
by Pierini et al. (2016) in the aperiodic-forcing case – was
confirmed here for the periodically forced case; cf. Figs. 6
and 11. This situation was explored in greater depth in Ap-

pendix A for an even simpler, weakly dissipative nonlinear
model, namely a Van der Pol–Duffing oscillator (e.g., Jack-
son, 1991), and additional references were given for this type
of PBA bistability.

Overall, this paper provides additional insights into the
complex and varied behavior that arises even in highly ide-
alized atmospheric, oceanic and climate models from the in-
teraction of nonlinear intrinsic dynamics with various types
of external forcing. In addition, it stresses the importance of
using the framework of nonautonomous dynamical systems
and of their PBAs for a deeper understanding of this com-
plexity and variety.

Data availability. No data sets were used in this article.
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Appendix A: Coexistence of pullback attractors in a
Van der Pol–Duffing oscillator

The purpose of this Appendix is to provide further insight
into the coexistence of local PBAs with quite different sta-
bility properties, as illustrated in the main text by Figs. 6 and
11. In complex autonomous systems, several local attractors
may coexist for a given set of the system’s parameters; each
of these attractors possesses attracting sets of initial data that
are typically separated by fractal boundaries (Grebogi et al.,
1987). Basins of attraction with fractal boundaries have con-
sequences for predictability: uncertainties in the initial state
x0 may result in different types of dynamical behavior, de-
pending on which basin x0 lies in; see, for instance, Roques
and Chekroun (2011). When the number of the coexisting at-
tractors is two, one speaks of bistability, and multistability
refers colloquially to more than two coexisting attractors.

Our goal here is to illustrate how multistability of nonau-
tonomous systems manifests itself unambiguously through
the existence of disjoint local PBAs. In the case of periodi-
cally forced systems, such as those considered in this article,
similar results can be inferred, of course, from the analysis of
Poincaré maps. Nevertheless, the presence of other frequen-
cies in the internal dynamics, the external forcing or the noise
may render the analysis of Poincaré maps difficult, whereas
the framework of PBAs naturally includes such additional
levels of complexity (Chekroun et al., 2018). Pierini et al.
(2016), for instance, already demonstrated the usefulness of
this framework in the context of bistability.

Furthermore, the purpose of this Appendix is also to il-
lustrate that multistability of local PBAs arises not only for
our quasigeostrophic model, as discussed in the paper’s main
text. More generally, PBA coexistence occurs fairly often for
externally forced systems, although a careful analysis of the
flow’s dependence on initial data may be required in practice
in order to conclude on multistability.

A paradigm of multistability is provided by dissipative
nonlinear systems that become Hamiltonian in the limit of
vanishing dissipation, as is the case, for instance, in celestial
mechanics (e.g., Ghil and Wolansky, 1992). In this situation,
it is expected that the number of coexisting attractors exceeds
any fixed bound in approaching this limit, as documented for
various nearly integrable maps and flows; cf. Feudel et al.
(1996), Zaslavsky and Edelman (2008), Celletti (2009), Pis-
archik and Feudel (2014) and Dudkowski et al. (2016), and
references therein.

To illustrate this multistability phenomenon, we consider
the following periodically forced Van der Pol–Duffing oscil-
lator, given by the second-order nonlinear (ordinary differen-
tial equation) ODE:

ẍ = µ(1− ẋ2)x− bx3
+F sin(ωt), (A1)

where µ, b, F and ω are positive constants that deter-
mine the dynamical behavior of the system. This system
is nonautonomous and its PBAs are analyzed hereafter in

Figure A1. Coexistence of local forward attractors. (a) Quasiperi-
odic forward attractor (blue) and chaotic attractor (red). (b) Power
spectrum associated with the quasiperiodic orbit (blue) and the
chaotic one (red).

Figure A2. Coexistence of local PBAs. The initial data leading to
quasiperiodic (and chaotic) orbits are taken from the small domain
D2 (and D1) described by Eq. (A2). The snapshot of the PBAs
shown here is taken at the fixed time t = 2000.

the (x, ẋ) plane. This nonlinear ODE arises in various ap-
plications such as in engineering, electronics, biology and
neurology (Jackson, 1991; Kozlov et al., 1999; Kuznetsov
et al., 2009). It combines the nonlinearity of the dissipation
−µẋ2x, which characterizes the Van der Pol (1920) oscilla-
tor with that of the internal force −bx3, which characterizes
the Duffing (1918) oscillator.

Multistability was already numerically documented for
Eq. (A1) by relying on Poincaré maps (Venkatesan and Lak-
shmanan, 1997; Dudkowski et al., 2016). In our calculations,
we have followed Dudkowski et al. (2016) and assumed
µ= 0.2, F = b = 1.0 and ω = 0.955. While this parameter
regime does not correspond to the limit of vanishing dissi-
pation that was mentioned above, it still allows for a coexis-
tence of PBAs, given a careful choice of initial states.
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Figure A3. Return maps of the minima of x(t) for (a) the quasiperiodic orbit shown in blue in Fig. A1(a), and for (b) the chaotic orbit shown
in red in Fig. A1a; see text for details.

The numerical protocol followed to analyze multistability
for Eq. (A1) in terms of PBAs is described next. First, the
initial data have been drawn uniformly in the two disjoint
domains D1 and D2 of the (x, ẋ) plane, with

D1 = [−2.5,−1.5]× [−2.5,−1.5],
D2 = [−0.34,−0.33]× [−0.34,−0.33]. (A2)

A total of 6000 initial data from each domain were propa-
gated according to Eq. (A1). The ODE was integrated us-
ing a Runge–Kutta fourth-order method with a constant time
step 1t = 10−2, generating a total of 12 000 trajectories and
keeping 106 data points for each, after removal of the tran-
sient.

The majority of the initial data taken in the smaller domain
D2 leads to a quasiperiodic orbit, while each of the 6000 ini-
tial data taken inD1 leads to a chaotic trajectory – as do a few
“rare” initial data from D2. An example of such a quasiperi-
odic trajectory is shown in blue in Fig. A1a, within the (x, ẋ)
phase plane. This blue trajectory is superimposed upon a red,
chaotic trajectory emanating from an initial point taken in
D1. The corresponding power spectra are shown in Fig. A1b,
with the same blue and red color coding. The chaotic trajec-
tory is clearly more diffuse within the phase plane than its
quasiperiodic counterpart, and its power spectrum is quite a
bit noisier. Both of these features are well known to be symp-
tomatic of deterministic chaos (Eckmann and Ruelle, 1985).

By allowing the quasiperiodic trajectories that emanate
from D2 to evolve up to t = 2000, one obtains the set of
blue points shown in Fig. A2. Somewhat surprisingly, this
set does not form a closed curve: each blue dot in Fig. A2 ac-
tually corresponds to the state at t = 2000 in the phase plane
of a quasiperiodic orbit. One such orbit is represented in blue

in Fig. A1a, after removal of the transient dynamics. Each
blue dot in Fig. A2 corresponds to a different quasiperiodic
orbit, whose frequency characteristics may change slightly
from one blue dot to another. All these quasiperiodic orbits
share, however, a spectral signature that resembles the one
shown by the blue curve in Fig. A1b.

To illustrate further the distinction between quasiperiodic
and chaotic orbits, the return maps for the minima of the
x(t) variable have been computed. As is well known (e.g.,
Strogatz, 2015), if the return map contains just one point,
the solution is periodic in time, with all minima having the
exact same value, and the period of the oscillation can be es-
timated by calculating the time interval between two consec-
utive minima. If the return map contains continuous-looking
curves that fill up with more and more points as the length
of the orbit increases, the solution is quasiperiodic, while the
presence of folds and self-similarity in the return map pro-
vides strong evidence for chaotic solutions. For the blue and
red trajectories of Fig. A1a, we plot the corresponding return
maps in Fig. A3a and b, respectively. The two plots clearly
discriminate between the quasiperiodic nature of the former
and the chaotic nature of the latter solution.

The initial data taken in D1, when allowed to flow ac-
cording to Eq. (A1), lead to a totally different local PBA
that is formed by the red points shown in Fig. A2. Although
the approximation of this local PBA shown here is rela-
tively sparse, one can clearly discern the fact that its con-
stitutive points are arranged according to a stretching and
folding pattern that is typical of nonlinear, chaotic dynamics
in the autonomous as well as in the nonautonomous setting
(Chekroun et al., 2018).
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The features that we find here to be exhibited by the lo-
cal chaotic PBA are highly reminiscent of those that were
obtained, in this deterministic case, by applying a stan-
dard Poincaré section analysis; cf. Dudkowski et al. (2016,
Fig. 17c). In the presence of noise, though, the fine structure
of the PBAs that results from stretching and folding in phase
space is still captured by the PBA framework (Chekroun
et al., 2018), whereas a Poincaré-map approach would lead
only to a cloud of points with no particular geometric struc-
ture. This statement was numerically illustrated by Chekroun

et al. (2011) in their Fig. 7, by contrasting the upper-right
panel vs. the six lower panels of that figure.

Finally, we emphasize that it is not the disjointness of the
two domains, D1 and D2, that leads to the two distinct types
of PBA, chaotic and quasiperiodic.1 Indeed, as mentioned
earlier, even though the area of D2 is small, it still contains
initial data whose evolution lands within the local PBA as-
sociated with chaos, i.e., with the other red points shown in
Fig. A2.

1Other such quasiperiodic PBAs exist (not shown), whereas only
one chaotic PBA seems to exist for the parameter regime analyzed
herein.
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