Articles | Volume 30, issue 4
https://doi.org/10.5194/npg-30-553-2023
https://doi.org/10.5194/npg-30-553-2023
Research article
 | 
29 Nov 2023
Research article |  | 29 Nov 2023

Downscaling of surface wind forecasts using convolutional neural networks

Florian Dupuy, Pierre Durand, and Thierry Hedde

Related authors

In situ observations of supercooled liquid water clouds over Dome C, Antarctica, by balloon-borne sondes
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech., 17, 5071–5089, https://doi.org/10.5194/amt-17-5071-2024,https://doi.org/10.5194/amt-17-5071-2024, 2024
Short summary
Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024,https://doi.org/10.5194/acp-24-613-2024, 2024
Short summary
Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica
Philippe Ricaud, Massimo Del Guasta, Eric Bazile, Niramson Azouz, Angelo Lupi, Pierre Durand, Jean-Luc Attié, Dana Veron, Vincent Guidard, and Paolo Grigioni
Atmos. Chem. Phys., 20, 4167–4191, https://doi.org/10.5194/acp-20-4167-2020,https://doi.org/10.5194/acp-20-4167-2020, 2020
Short summary
Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign
Federica Pacifico, Claire Delon, Corinne Jambert, Pierre Durand, Eleanor Morris, Mat J. Evans, Fabienne Lohou, Solène Derrien, Venance H. E. Donnou, Arnaud V. Houeto, Irene Reinares Martínez, and Pierre-Etienne Brilouet
Atmos. Chem. Phys., 19, 2299–2325, https://doi.org/10.5194/acp-19-2299-2019,https://doi.org/10.5194/acp-19-2299-2019, 2019
Short summary
Aerosol composition and the contribution of SOA formation over Mediterranean forests
Evelyn Freney, Karine Sellegri, Mounir Chrit, Kouji Adachi, Joel Brito, Antoine Waked, Agnès Borbon, Aurélie Colomb, Régis Dupuy, Jean-Marc Pichon, Laetitia Bouvier, Claire Delon, Corinne Jambert, Pierre Durand, Thierry Bourianne, Cécile Gaimoz, Sylvain Triquet, Anaïs Féron, Matthias Beekmann, François Dulac, and Karine Sartelet
Atmos. Chem. Phys., 18, 7041–7056, https://doi.org/10.5194/acp-18-7041-2018,https://doi.org/10.5194/acp-18-7041-2018, 2018
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
Characterisation of Dansgaard-Oeschger events in palaeoclimate time series using the Matrix Profile
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-13,https://doi.org/10.5194/npg-2024-13, 2024
Revised manuscript accepted for NPG
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024,https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary

Cited articles

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
de Bode, M., Hedde, T., Roubin, P., and Durand, P.: Fine-Resolution WRF Simulation of Stably Stratified Flows in Shallow Pre-Alpine Valleys: A Case Study of the KASCADE-2017 Campaign, Atmosphere, 12, 1063, https://doi.org/10.3390/atmos12081063, 2021. a
de Bode, M., Hedde, T., Roubin, P., and Durand, P.: A Method to Improve Land Use Representation for Weather Simulations Based on High-Resolution Data Sets-Application to Corine Land Cover Data in the WRF Model, Earth Space Sci., 10, e2021EA002123, https://doi.org/10.1029/2021EA002123, 2023. a
Dujardin, J. and Lehning, M.: Wind-Topo: Downscaling near-surface wind fields to high-resolution topography in highly complex terrain with deep learning, Q. J. Roy. Meteor. Soc., 148, 1368–1388, https://doi.org/10.1002/qj.4265, 2022. a, b, c, d, e, f, g, h, i, j, k, l
Dupuy, F., Duine, G.-J., Durand, P., Hedde, T., Roubin, P., and Pardyjak, E.: Local-Scale Valley Wind Retrieval Using an Artificial Neural Network Applied to Routine Weather Observations, J. Appl. Meteorol. Clim., 58, 1007–1022, https://doi.org/10.1175/JAMC-D-18-0175.1, 2019. a
Download
Short summary
Forecasting near-surface winds over complex terrain requires high-resolution numerical weather prediction models, which drastically increase the duration of simulations and hinder them in running on a routine basis. A faster alternative is statistical downscaling. We explore different ways of calculating near-surface wind speed and direction using artificial intelligence algorithms based on various convolutional neural networks in order to find the best approach for wind downscaling.