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Abstract. Near-surface winds over complex terrain generally feature a large variability at the local scale. Fore-
casting these winds requires high-resolution numerical weather prediction (NWP) models, which drastically
increase the duration of simulations and hinder them in running on a routine basis. Nevertheless, downscaling
methods can help in forecasting such wind flows at limited numerical cost. In this study, we present a statistical
downscaling of WRF (Weather Research and Forecasting) wind forecasts over southeastern France (including the
southwestern part of the Alps) from its original 9 km resolution onto a 1 km resolution grid (1 km NWP model
outputs are used to fit our statistical models). Downscaling is performed using convolutional neural networks
(CNNs), which are the most powerful machine learning tool for processing images or any kind of gridded data,
as demonstrated by recent studies dealing with wind forecast downscaling. The previous studies mostly focused
on testing new model architectures. In this study, we aimed to extend these works by exploring different output
variables and their associated loss function. We found that there is no one approach that outperforms the others
in terms of both the direction and the speed at the same time. Finally, the best overall performance is obtained by
combining two CNNs, one dedicated to the direction forecast based on the calculation of the normalized wind
components using a customized mean squared error (MSE) loss function and the other dedicated to the speed
forecast based on the calculation of the wind components and using another customized MSE loss function.
Local-scale, topography-related wind features, which were poorly forecast at 9 km, are now well reproduced,
both for speed (e.g., acceleration on the ridge, leeward deceleration, sheltering in valleys) and direction (deflec-
tion, valley channeling). There is a general improvement in the forecast, especially during the nighttime stable
stratification period, which is the most difficult period to forecast. The result is that, after downscaling, the wind
speed bias is reduced from − 0.55 to −0.01 m s−1, the wind speed MAE is reduced from 1.02 to 0.69 m s−1

(32 % reduction) and the wind direction MAE is reduced from 25.9 to 15.5◦ (40 % reduction) in comparison
with the 9 km resolution forecast.

1 Introduction

Over complex terrain, topography and near-surface processes
affect low-level winds: slope winds resulting from spatial
thermal differences along sloping terrain, deviation around
hills, channeling in valleys, speedup on mountain crests and
acceleration across gaps and passes (Whiteman, 2000). The
result is that winds generally feature complex structures at
the local scale. In consequence, forecasting these winds re-
quires high-resolution (HR) numerical weather prediction

(NWP) models in order to represent the complexity of the
topography and its local impact on the flow. This can be
achieved through dynamical downscaling, that is to say by
using an HR NWP model in a limited domain forced by
a lower-resolution forecast (Schmidli et al., 2018; de Bode
et al., 2021). However, applying such methods over a rela-
tively large domain and for long time periods drastically in-
creases the duration of simulations and hinders the ability to
run them on a routine basis.
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Other downscaling methods can help forecasting such
wind flows at limited numerical cost. TopoSCALE (Fiddes
and Gruber, 2014) and WindNinja (Wagenbrenner et al.,
2016) are two physically based downscaling schemes which
formulate physical principles to account for the effect of
a high-resolution topography on boundary-layer meteorol-
ogy. Both provide wind forecast downscaling (albeit with
some limitations) at a limited computational cost compared
to NWP models (Fiddes and Gruber, 2014; Wagenbrenner
et al., 2016; Kruyt et al., 2022). The other main downscaling
approach is statistical downscaling. Contrarily to physically
based models, such methods take advantage of past observa-
tions or HR forecasts, bringing about local wind information,
which can help in reproducing the local-scale flow struc-
ture. Several methods have been applied to weather forecast
downscaling: generalized additive models for wind compo-
nents (Salameh et al., 2009), random forests for wind speed
(Zamo et al., 2016) and artificial neural networks (ANNs) for
wind components (Dupuy et al., 2021a) (see Vannitsem et al.,
2021, for a recent overview).

Over the past decades, ANNs have become one of the
most widely used machine learning methods and have trans-
formed many fields (e.g., image recognition, automatic trans-
lation), including science. Convolutional neural networks
(CNNs) (LeCun et al., 2015) are a special kind of neural
network designed to extract hierarchical features from grid-
like data, making them the state-of-the-art machine learning
techniques for complex image processing like image super-
resolution, which consists in generating an HR image from a
low-resolution (LR) image (see Yang et al., 2019, and Kulka-
rni et al., 2022 for an overview). Therefore, CNNs appear
to be a suitable tool to work with geophysical data issued
from numerical models in order to extract spatial features, as
well as to perform a downscaling. The atmospheric research
community has already taken advantage of CNNs’ abilities
for diverse applications (see Reichstein et al., 2019, for an
overview) including NWP output post-processing (Vandal
et al., 2018; Lagerquist et al., 2019; Dupuy et al., 2021b) and
statistical downscaling (see Leinonen et al., 2021, and Har-
ris et al., 2022, for two examples on precipitation forecasts),
with CNNs outperforming other traditional methods in these
studies.

However, studies dealing with statistical downscaling of
both wind speed and direction forecast using CNNs are rare.
Höhlein et al. (2020), Miralles et al. (2022) and Le Toumelin
et al. (2023a, b) used a 2D-to-2D architecture producing a
downscaled 2D field from LR 2D fields issued from a NWP
model. Miralles et al. (2022) used a generative adversarial
network (GAN) designed to produce realistic-looking fields,
while Höhlein et al. (2020) and Le Toumelin et al. (2023a, b)
both used a classic U-Net architecture, although they ap-
plied different training approaches: Höhlein et al. (2020) di-
rectly trained their model using HR and LR forecasts, while
Le Toumelin et al. (2023a, b) first trained their model us-
ing HR and LR output from simulations of idealized con-

ditions (controlled atmospheric conditions and idealized to-
pographies) and then applied it to their real-world LR fore-
casts. On the other hand, Dujardin and Lehning (2022) used
a 2D-to-point architecture, meaning that their CNN uses 2D
field data to calculate the wind at a single point (the center of
the input 2D data). This singular approach derives from the
ground truth data they use, which come from weather sta-
tion observations, contrary to the 2D-to-2D approach where
target data come from NWP models. Nevertheless, Dujardin
and Lehning (2022) also produced 2D wind fields (on a grid
with a horizontal resolution as fine as 50 m) by providing
their model with input data centered on different locations.
It has to be noted that HR and LR do not refer to the same
scales in these studies. Downscaling was performed from 31
to 9 km (ratio close to 3) in Höhlein et al. (2020), from 25
to 1.1 km (ratio close to 20) in Miralles et al. (2022), from
1.1 km to 50 m (ratio close to 20) in Dujardin and Lehn-
ing (2022) and from 1.3 km to 30 m (ratio close to 40) in
Le Toumelin et al. (2023a, b). Moreover, Le Toumelin et al.
(2023b) and Miralles et al. (2022) only used topographical
information as additional predictors to the LR wind forecast,
while Höhlein et al. (2020) and Dujardin and Lehning (2022)
used others meteorological parameters. Thus, meteorological
phenomena that are expected to be reproduced should differ.
For instance, Miralles et al. (2022), Dujardin and Lehning
(2022) and Le Toumelin et al. (2023b) report improvements
in the representation of the main orographic effects that are
not resolved in the larger-scale data, like acceleration on the
ridge and sheltering effect. Moreover, Dujardin and Lehn-
ing (2022) noted a more realistic wind deflection, while Le
Toumelin et al. (2023b), as well as Miralles et al. (2022) over
the Alps, found only a small impact on the direction from
their downscaling.

This study aims to pursue the exploration of new strategies
of wind forecast downscaling in line with the works intro-
duced above. We present a 2D-to-2D statistical downscaling
approach with the originality that wind variables are calcu-
lated in different ways, which generates different wind fore-
casts. We apply this strategy to WRF (Weather Research and
Forecasting) wind forecasts over southeastern France (in-
cluding the southwestern part of the Alps) from their original
9 km horizontal resolution to a 1 km resolution grid (Sect. 2).
We evaluate the performances of the different high-resolution
forecasts and analyze their advantages and disadvantages
(Sect. 3). Then we present the main conclusions of the study.

2 Methods

2.1 WRF forecasts

The WRF NWP model (Skamarock et al., 2019) was run in
a grid-nested mode, with three nested domains (Fig. 1): D1
with a 9 km horizontal resolution (152×155 grid points, i.e.,
1368× 1395 km), covering France and its surroundings (es-
pecially to the south and to the east); D2 with a 3 km resolu-
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Figure 1. Representation of the three nested domains of the WRF
model. The blue square represents the 288× 288 grid cell area de-
scribed in Sect. 2.3.

tion (99× 99 grid points, i.e., 297× 297 km); and D3 with a
1 km resolution (99×99 grid points, i.e., 99×99 km), located
in southeastern France. WRF was routinely run in this oper-
ational forecast mode once a day from 24 December 2020 to
5 May 2022 for lead times up to 72 h. We only used simu-
lations for lead times from 12 to 72 h (the first 12 h are con-
sidered to be the spin-up and are then discarded) resulting in
a total of 29 036 h of outputs (after removing some dates for
which D3 data are missing). More details on the WRF setup
can be found in de Bode et al. (2023).

2.2 Training data

The objective is to downscale the 9 km resolution WRF low-
level wind forecasts (called WRF LR, for low resolution, in
the following) towards a 1 km resolution over an area corre-
sponding to the D3 domain. The 1 km WRF forecast (called
WRF HR, for high resolution, in the following) is considered
to be the target used to train the statistical models. The wind
under consideration throughout this paper is taken at 10 m
above the ground.

Wind variables, as well as many other variables, from the
WRF LR forecasts are used as predictors for the CNNs:
wind components (u for the eastward component, v for the
northward component), wind direction (in degrees, both in
the ranges of [0;360], [−180;180] and [180;540]) and its
cosine and sine, and wind speed; basic meteorological pa-
rameters (2 m temperature and potential temperature, surface
pressure, and convective and non-convective precipitation);
short-wave and long-wave radiation fluxes; and stability-
related variables (boundary layer height and friction veloc-

ity). Note that numerous predictors are highly influenced by
the diurnal cycle (temperature, solar radiation, etc.), which
justifies the fact that we did not add explicitly time-related
predictors like hours in the day.

Besides, in order to incorporate the geographical context,
some HR parameters, called static since they do not vary in
time, such as topography (and difference between the LR and
HR topography) and a land–sea mask, are added to the list
of predictors. Moreover, following the recommendations of
Dujardin and Lehning (2022), slope and aspect (orientation
of the slope) HR fields calculated from the HR topography
are added (see Fig. 2).

Finally, we added the new predictors introduced by Du-
jardin and Lehning (2022), which combine wind and topog-
raphy information, giving insight into wind–topography in-
teractions. More specifically, they calculate a theoretical cor-
rection of the wind components in order to represent the
speed modification caused by the exposure and sheltering to
the wind, as well as the deflection caused by the relief. The
reader can refer to Dujardin and Lehning (2022) for more de-
tails. Finally, we have a list of 35 predictors (see Table 1) that
are all used to train the different CNNs described in the next
section.

2.3 Convolutional neural network architecture

The objective of a neural network (NN) is to find a mathemat-
ical function linking a list of predictors to a list of predictands
(considered to be the truth). The function is composed of
neurons (a linear combination of input variables transformed
by a so-called activation function) interconnected between
each other and arranged in layers. Training the NN consists
in fitting its function to produce results as close as possible
to the truth (the reader can refer to Goodfellow et al., 2016,
for more explanations).

Convolutional layers can be introduced in NN when deal-
ing with grid-like data in order to take advantage of the infor-
mation contained in spatial structures. In these layers, neu-
rons actually correspond to a convolution function which is
applied to a limited part of the grid. NNs using such layers
are called convolutional neural networks (CNNs).

In this study, we used a U-Net architecture (Ronneberger
et al., 2015), which is a fully convolutional network that
generates images from images. Its name comes from its U-
shaped architecture in which convolutional layers are sepa-
rated first with pooling layers and then with transposed con-
volutional layers. The first phase, with pooling layers, re-
duces the size of images, which is known to capture the con-
text of input images. The second phase, with transposed con-
volutional layers, increases the size of the contracted images,
enabling a precise localization.

The architecture of the CNN used is described in Fig. 3.
Before entering the U-Net, the data follow a two-step pro-
cess. The LR input data are composed of 32× 32 grid points
with a resolution of 9 km, corresponding to the blue domain
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Figure 2. Illustration of static predictors for the D3 domain: (a) topography (in m a.s.l.), (b) orientation of the slope and (c) local slope. The
red rectangle in (a) shows the area of the plots in Figs. 6, 7 and 8. Letters refer to some topographical sites: MV for Mont Ventoux, LM
for Lure mountain, L for Luberon mountain, DV for Durance valley, VP for Valensole plateau, AV for Asse valley, VG for Verdon Gorge
and SV for Sainte-Victoire mountain. The two purple dots indicate the locations of the valley site and crest site depicted in Figs. 9 and 10,
respectively.

Table 1. List of variables used as predictors in that study.

Wind-related variables
Zonal (u) and meridional (v) wind components, wind speed (FF) and direction (in degrees, both in the ranges of [0;360]◦, [−180;180]◦

and [180;540]◦), and cosine and sine of the direction.

Other meteorological variables
2 m temperature and potential temperature, surface pressure, convective and non-convective precipitation, ongoing long-wave and
short-wave radiation at the surface, boundary layer height, and friction velocity.

Terrain variables
Topography, difference between the LR and HR topography, land–sea mask, and slope and aspect.

Other variables (see Dujardin and Lehning, 2022):
Exposure (E+) and sheltering (E−) to the wind; E+× u; E+× v; E−× u; E−× v; E+×FF; E−×FF; wind components;
theoretical modification; and the underlying direction, cosine, and sine theoretical modification.

represented in Fig. 1. This domain is larger than the D3 do-
main in order to incorporate information on a larger spatial
scale and thus give more information on the regional atmo-
spheric conditions. These data are then interpolated on the
HR grid (288× 288 grid points with a resolution of 1 km us-
ing a bicubic interpolation (the red layer in Fig. 3)) in order
to reduce LR grid pattern artifacts in the outputs of the CNN,
following which all the predictors are standardized. We used
a padding of 1 in order to produce outputs with the same size
as inputs although we cropped the 288×288 outputs since we
only focus on the 99km× 99km central area corresponding
to the D3 domain. In order to avoid overfitting, we added a
batch normalization (Ioffe and Szegedy, 2015) and a drop out
(Srivastava et al., 2014) after convolutional layers, and we in-
troduced an early stopping that stopped the learning when the
loss function calculated on an independent validation dataset
did not improve over 10 successive epochs. The ReLU acti-
vation function is applied after each convolutional layer, ex-
cept for the final 1×1 convolutional layer in order to produce
a not-bounded regression. The mean squared error (MSE) is
used as loss function. Additional modifications tested are de-
scribed in the next sections. We used the PyTorch library of
Python for the machine learning developments.

2.3.1 Choice of target variables

We are not only interested in the wind speed, as in most stud-
ies about wind forecast downscaling, but we also want to cal-
culate the wind direction. However, the direction may be dif-
ficult to calculate directly because of its cyclic nature. Circu-
lar regression tools are generally based on the von Mises dis-
tribution (also called circular normal distribution), but they
are challenging to optimize, even if Lang et al. (2020) de-
veloped a circular regression tool based on random forests
(Breiman, 2001), which simplifies the optimization process.
On the other hand, more classic regression approaches, for
instance, those based on the estimation of the conditional
mean (via the minimization of the mean squared error), seem
inappropriate since there is no definition of the mean direc-
tion calculated directly on a set of direction values. Despite
this, Le Toumelin et al. (2023a) performed a regression that
calculated directly the direction, which improved their direc-
tion forecast, using a cosine distance as the loss function (see
Sect. 2.3.2). We tested their approach via a specific CNN
training (this model is called CNNdir hereafter).

Otherwise, the mean direction can be calculated based on
its sine and cosine (or wind components in the case of wind
data) values (Jammalamadaka and SenGupta, 2001). That is
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Figure 3. Schematic illustrating the architecture of the CNN used in the study. BN stands for batch normalization. The numbers under the
different computation blocs indicate the dimension of the data at different stages of the network at the output of the corresponding bloc. NI
(= 35) and NO (see Table 2) represent the number of input variables and the number of target variables, respectively. On the output, the
orange area represents the crop (99× 99) from the yellow part (288× 288).

why it is more common to calculate the wind components
when using regression tools (Dupuy et al., 2019, 2021a; Höh-
lein et al., 2020; Miralles et al., 2022; Dujardin and Lehn-
ing, 2022) since they carry information on both speed and
direction. We apply this approach in this study. Therefore,
the CNN outputs two variables aiming at representing the u
and v wind components (this model is called CNNu,v here-
after).

Nevertheless, for a given error in any of the two compo-
nents, the forecast error in the underlying direction varies
in terms of the function of the speed (the lower the speed,
the higher the error in the direction) and direction. It results
that direction errors in lighter winds are artificially less pe-
nalized than direction errors in larger winds. Knowing that
light winds’ directions are difficult to forecast (with a deter-
ministic model) because of their higher spatial and tempo-
ral heterogeneity, this strategy reinforces the difficulty. The
normalization of the components by the wind speed, which
gives the cosine and sine values of the direction (noted ũ and
ṽ), is a way to equally penalize all wind speed conditions.
We thus tried to forecast these variables (this model is called
CNNũ,ṽ), although they do not incorporate any information
on the speed, which has to be computed in some other way
(for instance with the CNNu,v).

2.3.2 Loss function

In our case, the MSE loss produces a negatively biased
speed forecast. Dujardin and Lehning (2022) proposed a loss
function, inspired by the Pinball function, which is used to
make quantile regressions, in order to produce unbiased wind
speed predictions when they derive from the components
(Eq. 1):

Lspd =
1
N

N∑
i=1

τi

[(
ûi −βiui

)2
+
(
v̂i −βivi

)2]
,

βi =
ε+ ||U ||i

ε+ ||Û ||i
, τi =

{
τ if ||Û ||i ≥ ||U ||i,
1− τ if ||Û ||i < ||U ||i .

(1)

with û and v̂ being the CNN outputs wind components, ||U ||
and ||Û || being the target and output speed, and τ and ε be-
ing two constants. Using values of τ = 0.3 and ε = 4.3 m s−1

(these values were chosen after numerous tests), we obtained
an unbiased forecast (model called CNNu,v,Lspd ).

In order to get consistent couples of cosine and sine values
when calculating the normalized components, that is to say
ũ2
+ ṽ2
= 1, we tested a loss function combining the classic

MSE and the absolute distance between unity and the sum of
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squared normalized components (Eq. 2):

L2 =
1
N

N∑
i=1

[(
ˆ̃ui − ûi

)2
+

(
ˆ̃vi − v̂i

)2

+α
[
1−

(
ˆ̃u2
i +
ˆ̃v2
i

)]]
, (2)

with α a weight to balance the two penalty terms. In our case,
α = 0.2 is the optimal value. For larger values the cosine–
sine value couples were globally more consistent but at the
expense of the direction forecast.

Another way to get consistent ˆ̃u and ˆ̃v values is to calcu-
late one of them, for instance ˆ̃u, and derive the other one ( ˆ̃v)
based on the ˆ̃u2

+ ˆ̃v2
= 1 relation. However, this formula does

not give the sign of ˆ̃v, which then has to be calculated in an-
other way. In our test, we used the ˆ̃u values and ˆ̃v signs from
CNNũ,ṽ (thus, there is no additional CNN training; instead,
this approach has to be seen as a postprocess of the CNNũ,ṽ
results) to calculate ˆ̃v (Eq. 3, model called CNNũ→ṽ here-
after). Similarly, we calculated ˆ̃u based on the ˆ̃v values and ˆ̃u
sign from CNNũ,ṽ (model called CNNṽ→ũ hereafter).

ˆ̃v = sign
(
ˆ̃vCNNũ,ṽ

)
×

√
1− ˆ̃u2

CNNũ,ṽ
(3)

Finally, as described in the previous section, the CNNdir is
trained using its own loss function (Ldir), introduced in the
study of Le Toumelin et al. (2023a):

Ldir = 1−
1
N

N∑
i=1

[
cos

(
d̂iri − diri

)]
, (4)

with dir and d̂ir being the target and CNN output directions,
respectively. A summary of the tests performed in this study
is given in Table 2.

2.4 Wind forecast evaluation

The performance was evaluated by comparing the difference
between the target (deterministic 1 km WRF simulation) and
the output of the various CNNs. The improvement brought
by the CNNs translates as a reduction of the wind field error
with respect to the initial 9 km WRF wind field error. The
latter is computed on the difference between the determinis-
tic 1 km WRF simulation and the 9 km WRF wind field pro-
jected onto the 1 km grid (on the D3 domain) with a bicubic
interpolation. Therefore, in the following, WRF LR stands
for the 1 km field interpolated from the 9 km WRF forecast.

To evaluate the significance of the results and consider-
ing the relatively small size of our dataset, we performed a
k-fold cross validation in order to use as much data as pos-
sible during the training while evaluating the models over a
large period. For each CNN model tested, four (k = 4 for the
cross validation) training runs were performed, each using
75 % of the dataset for training and the remaining 25 % for
testing (there is no overlap of data between the four test sets,

and the test and training sets are completely independent).
By combining the results of the four training runs, applied
to the four different test sets, we obtain a test dataset cov-
ering the entire period available. Then, we bootstrapped the
test dataset, yielding a distribution for each metric, in order
to evaluate their dispersion (Wilks, 2011).

We mostly focused on evaluating the wind speed and di-
rection using classic metrics such as the mean absolute er-
ror (MAE) and the mean bias error (MBE). Moreover, we
compared the accuracy of the wind speed distribution using
the Earth Mover’s Distance, also known as the Wasserstein
distance (WD). The WD between f and f̂ , two discrete his-
tograms with samples on N bins and normalized values (in
the sense that

∑N
i=1f (i)=

∑N
i=1f̂ (i)= 1), is defined as fol-

lows:

WD
(
f, f̂

)
=

1
N

N∑
i=1

∣∣∣F (i)− F̂ (i)
∣∣∣ , (5)

where F and F̂ are the cumulative histograms of f and f̂ .
For the direction distribution, we used a modified version
called circular Earth Mover’s Distance suited to circular vari-
ables (Rabin et al., 2008) defined as follows:

WD
(
f, f̂

)
= min
k∈{1,...,N}

{
1
N

N∑
i=1

∣∣∣Fk(i)− F̂k(i)∣∣∣} , (6)

where ∀k ∈ {1, . . .,N} (the definition is similar for F̂k
through replacing f with f̂ ):

Fk(i)=


i∑

j=k

f (j ) if i ≥ k,

N∑
j=k

f (j )+
i∑

j=1
f (j ) if i < k.

Finally, we evaluate the spatial heterogeneity of the wind
field by calculating the standard deviation of the speed and
direction fields for each of the 29 036 map samples (one
value per sample). For the direction, which is a circular vari-
able, we used the Yamartino (1984) method (Eq. 7):

σdir = arcsin(ε)
[

1+
(

2
√

3
− 1

)
ε3
]
, (7)

with

ε =

√
1−

(
s2
a + c

2
a

)
; sa =

1
N

N∑
i=1

sin(dir)i ;

ca =
1
N

N∑
i=1

cos(dir)i .

2.5 Computational considerations

The training of each CNN on a NVIDIA GeForce GTX TI-
TAN V graphics processing unit (GPU) lasts around 4 h,
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Table 2. Summary of models used for downscaling tests.

Name Output variable(s) Loss function NO

CNNu,v u and v MSE 2
CNNu,v,Lspd u and v Lspd 2
CNNũ,ṽ ũ and ṽ MSE 2
CNNũ,ṽ,L2 ũ and ṽ L2 2
CNNdir direction Ldir 1
CNNũ→ṽ Postprocessing of the CNNũ,ṽ outputs (no additional model training needed).
CNNṽ→ũ Postprocessing of the CNNũ,ṽ outputs (no additional model training needed).

but once fitted, it takes only a few seconds to process a
lead time of one simulation using one of the CNNs listed
in Table 2 in the same GPU, which is valuable consider-
ing that operational LR forecasts are available several hours
ahead, whereas a dynamical downscaling performed with
WRF would require hours of computation.

3 Results and discussion

3.1 Overall performance of the models

A summary of performance for all the downscaling models
is given in Fig. 4. All the CNNs reduce the MAE of the di-
rection and speed, as well as the wind speed bias compared
to WRF LR forecasts. However, the bias in the wind compo-
nents, which is close to zero in WRF LR, is slightly degraded
after the downscaling but remains low for all the CNNs (in
the range [−0.05;0.05]m s−1).

Concerning the wind speed, the CNNu,v,Lspd is better than
the other CNNs, especially for the correction of the nega-
tive bias, which is reduced to−0.01 m s−1, demonstrating the
ability of the Lspd loss function to reduce the bias. However,
it has one of the worst performances of all the CNNs in terms
of the direction and the components (largest MAE values),
meaning that the speed improvement occurs at the expense
of a degradation of the forecast of the couple of components.

Concerning the direction, all the CNNs greatly improve
the performance with respect to the LR forecast, with a re-
duction in MAE on the order of 10◦. The CNNũ,ṽ,L2 achieves
the best performance. We detail the performance of the dif-
ferent direction forecasts in Fig. 5. In Fig. 5a, we compare
the MAEs of the direction according to the wind direction
(as computed by WRF HR). The point of this figure is not
to focus on the evolution of the MAE in terms of the func-
tion of the direction for a given model since many factors
should be considered (for instance, the MAE is lower for the
northwesterly and southeasterly winds because of the higher
occurrence of high speeds for which the direction is easier
to forecast). Instead, we analyze the differences, for a given
direction, between the different models. The CNNũ,ṽ,L2 and
CNNũ,ṽ are really close, while the CNNu,v reaches slightly
higher values for southerly winds for unidentified reasons.
But above all, the CNNdir behaves singularly, with larger

MAE values for winds coming from the NW and NE quad-
rants, while they are close to the other CNNs for the SW
and SE quadrants. This is related to an under-prediction of
northerly winds, as illustrated in Fig. 5b, which could re-
sult from an artifact around the 0–360◦ numerical disconti-
nuity in the wind direction. It seems that Le Toumelin et al.
(2023a, their Fig. 4e) experienced the same issue (important
underestimation of the occurrence of northerly winds), possi-
bly with the same consequence for the wind direction MAE,
which confirms that calculating the direction as a direct out-
put is not appropriate, as already explained in Sect. 2.3.1.
Besides, calculating ũ and ṽ without any constraint on the
couple they form leads to important inconsistencies ( ˆ̃u2

+ ˆ̃v2

should be equal to 1 but is underestimated most of the time;
see Fig. 5c), which are partly corrected when using the L2
loss (with more values close to 1), together with a slight im-
provement in the direction forecast. On the other hand, the
post-processing of the CNNũ,ṽ outputs in order to get ũ and
ṽ values that respect the ˆ̃u2

+ ˆ̃v2
= 1 equality (CNNũ→ṽ and

CNNṽ→ũ) deteriorates the direction forecast, suggesting that
inconsistencies between the couples of ũ and ṽ reduce direc-
tion errors somehow. Finally, the geographical difference in
MAE between the CNNũ,ṽ,L2 and the CNNu,v (Fig. 5d) in-
dicates that the improvement is not homogeneously spread
over the domain but mainly occurs over regions featuring
lighter winds on average, generally corresponding to valleys.
This behavior was expected since the calculation of the nor-
malized components artificially increases the weight of the
direction errors in the lighter winds with respect to the calcu-
lation of u and v, as explained in Sect. 2.3.1.

In conclusion, there is no one CNN that outperforms the
others. Compared to the classic approach (CNNu,v), the
modifications improved either the direction or the speed but
not at the same time. Finally, the best overall performance
can be obtained by the combination of CNNu,v,Lspd for the
calculation of the speed and CNNũ,ṽ,L2 for the direction. In
the following, CNN results refer to such a combination of
post-processing results.
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Figure 4. Summary of performance for the different models –
(a) wind speed MAE, (b) wind speed MBE, (c) wind direction
MAE, (d) uMAE, (e) uMBE, (f) v MAE and (g) v MBE. For each
metric, the best-performing model label is written in bold type.

3.2 Wind field characteristics

Before evaluating the downscaling’s overall performance, we
illustrate the forecast improvement for two selected cases
over a limited area of the D3 domain, which is interest-

ing since it encompasses important ridges (e.g., the Lure
mountain) and steep local valleys in its northern part and
a smoother topography in its southern part, with the wide
Durance valley crossing the area from the north towards the
south (see the location of the area in Fig. 2a and its topo-
graphical characteristics in Fig. 6). The results for the two
cases are presented in Figs. 7 and 8, respectively. These fig-
ures are composed of six panels split into two rows. There is
a classical representation of wind forecasts in the top row
(WRF LR (a), WRF HR (b) and CNN (c)) in which the
wind is represented with arrows. The bottom row shows
the forecast errors of WRF LR (d) and the CNN (f), as
well as the correction of the CNN with respect to WRF LR
(e): the longer the arrows, the larger the error and/or dif-
ference, while the color of the arrows represents the speed
error and/or modification. Therefore, in panels (d) and (f)
(respectively, (e)), small white arrows indicate a good fore-
cast (respectively, a slightly modified forecast), whereas long
white arrows indicate important errors (respectively, impor-
tant modifications) in direction associated with low-speed er-
rors (respectively, small modifications). Long red and blue
arrows in panels (d) and (f) indicate over- and underestimated
speeds associated with either a good direction forecast if the
orientation of arrows in the WRF LR (panel a) or CNN (panel
c) forecast is the same (modulo 180◦), as in the error of fore-
cast (panels d or f), or a bad direction forecast otherwise. The
same logic applies to panel (e) for the correction by the CNN.

In Fig. 7, the meteorological situation corresponds to a
calm night with a weak synoptic forcing. The HR forecast
wind field (Fig. 7b) has a high spatial heterogeneity for
both speed and direction, resulting from typical topography-
dependent features under stable stratification, such as chan-
neled valley winds and downslope winds, e.g., in the northern
part of the domain, as well as around less steep hills, e.g., in
the southern part of the domain. The LR forecast (Fig. 7a)
also features valley and downslope winds but in relation to
its LR topography (Fig. 6a), that is to say a single wide and
flared valley, bending around the only main ridge resolved
in the northwest part of the area. This results in important er-
rors in terms of direction and speed around all the unresolved
topographical features (Fig. 7d). The CNN output is very dif-
ferent from the LR wind field over the whole area (long ar-
rows in Fig. 7e), with important speed and/or direction mod-
ification. The downscaled wind field (Fig. 7c) appears to be
very close to the HR field, with a good representation of all
the topography-dependent features, which is confirmed by
the errors which are generally very low over the whole area
(Fig. 7f).

The meteorological situation presented in Fig. 8 corre-
sponds to a Mistral (regional wind) event, characterized by
northwesterly winds at the synoptic scale over the area con-
sidered. Over the southern part of the domain, the HR wind
field (Fig. 8b) shows a moderate variability with slight de-
flections and variations in speed around small-scale reliefs
(acceleration over ridges and leeward deceleration). The LR
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Figure 5. (a) MAE in wind direction according to the wind direction from the HR dataset. (b) Polar distributions of the directions computed
by the different models. In (a) and (b), the results of CNNu,v,Lspd , CNNũ→ṽ and CNNṽ→ũ are not represented in order to make the figures

more readable and because their performance in terms of the direction is lower. (c) Distribution of ˆ̃u2
+ ˆ̃v2 values for CNNũ,ṽ and CNNũ,ṽ,L2 .

(d) Difference in MAE in the wind direction between CNNũ,ṽ,L2 and CNNu,v (negative values mean that CNNũ,ṽ,L2 performs better, while
positive values mean that CNNu,v performs better).

Figure 6. (a) LR topography after a bicubic interpolation towards the 1 km grid, (b) HR topography and (c) HR slope for the area of Figs. 7
and 8 (see the location of the area in Fig. 2a).

forecast (Fig. 8a) does not represent these topographical fea-
tures since local topography vanishes at the 9 km resolution.
The wind field is therefore very homogeneous, with small
direction changes and hence an overestimation of leeward
speeds and an underestimation windward (Fig. 8d). The CNN
only marginally corrects the LR forecast over this area (small
arrows in Fig. 8e). The deflection around reliefs (Fig. 8c)
and the leeward deceleration and ridge acceleration (red ar-
rows windward and blue arrows leeward in Fig. 8e) are only
partially represented, resulting in significant errors remaining
after downscaling (Fig. 8f).

Over the northern part of the domain, the HR wind field
(Fig. 8b) is much more impacted by the topography (which
features deeper valleys and hills). It results in a flow chan-
neling in narrow valleys, deflections around main hills and a
large acceleration over the main ridges. The LR wind field
(Fig. 8a) presents features constrained by the highest ridge
(the Lure mountain), which is still represented even at the
9 km resolution, with a notable deflection around it, as well as
a deceleration on the leeward side. However, deflection and
acceleration are lower than those in the HR field, which trans-
lates as important errors in the speed over the relief (Fig. 8d).
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Figure 7. Situation of 6 January 2021 at 07:00 UTC (simulation starting at 00:00 UTC on 5 January 2021, lead time 31 h). The area corre-
sponds to the red rectangle in Fig. 2a. Horizontal wind computed by (a) WRF LR, (b) WRF HR and (c) the CNN. Panels (d) and (f) represent
the errors corresponding to the wind fields represented in (a) and (c), respectively. Panel (e) represents the vector difference between pan-
els (c) and (a). In panels (d), (e) and (f), the color of the arrows indicates the error or difference in wind speed.

Moreover, topographic effects by small hills and valleys are
not represented, which generates large direction and speed
errors (Fig. 8d). The correction brought by the CNN is more
important over this area (long arrows in Fig. 8e) than over
the southern area, allowing one to correctly represent the to-
pographical features present in the HR wind field.

To summarize, the CNN learned the characteristics of the
interaction between wind and topography under weak syn-
optic forcing and under strong wind conditions even if, for
the latter, the corrections over local and thin topographical
elements are moderate. In the following section, we analyze
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Figure 8. Same as Fig. 7 (only the scales of the arrows differ) for the situation of 13 January 2021 at 13:00 UTC (simulation starting at
00:00 UTC on 11 January 2021, lead time 61 h).

whether these improvements can be generalized to the whole
period.

3.3 Wind climatology at specific sites

We begin this wind climatology with the description of re-
sults for two sites featuring very different characteristics,
namely a valley site (Fig. 9) and a crest site (Fig. 10). The lo-

cation of these sites is indicated in Fig. 2a. We picked these
two sites as illustrations because valleys and crests are the
most difficult locations for wind forecasts.

The valley site features two different kinds of winds
(Fig. 9e). Firstly, there are winds greater than 6 m s−1, which
are mainly oriented northwesterly and southeasterly, corre-
sponding to Mistral events and cloudy or rainy weather, re-
spectively, the directions of which are not very dependent on
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Figure 9. Comparison of wind climatology (calculated for our dataset, that is to say from 24 December 2020 to 5 May 2022) between
WRF HR, WRF LR and the CNN in a single grid cell in a valley (see purple dot in Fig. 2a for the exact location). (a) Comparison of wind
speed probability density functions. (b) Density scatter plot comparing wind speeds from the HR and LR forecasts. (c) Same as (b) for the
comparison between the HR forecast and the CNN. Panels (d), (e) and (f) show wind roses of the WRF LR, the WRF HR and the CNN,
respectively. The colors of the wind roses represent the wind speed, and the background in the disks represents the topography within a radius
of 15 km around the valley site.

the local topography (important large-scale forcing). These
winds are well reproduced in the CNN (Fig. 9f) and rea-
sonably well in WRF LR (Fig. 9d), although the northwest-
erly winds are more dispersed. Moreover, there is a nega-
tive bias in speed associated with these winds in WRF LR
(Fig. 9b), which is only marginally corrected by the CNN
(Fig. 9c). Secondly, there are west–southwesterly and east–
northeasterly winds corresponding to up-valley and down-
valley winds, respectively, which are highly dependent on
the local topography. Both WRF LR and the CNN correctly
predict the up-valley winds. However, WRF LR fails to pre-
dict the down-valley winds, which are rotated counterclock-
wise by approximately 45◦ due to the southwesterly slope
of the LR topography at this place (which is consistent with
explanations of Fig. 7a), contrarily to the CNN which cor-
rectly represents them. Therefore, those winds correspond to
downslope winds in both models. Finally, there is an overrep-
resentation of winds lower than 3 m s−1 in WRF LR, which
is only marginally corrected by the CNN (Fig. 9a).

The wind at the crest site features two major orientations,
slightly dispersed around the northerly-to-northeasterly and
southerly directions (Fig. 10e), mainly resulting from large-
scale flow forcing. The WRF LR wind rose also presents a
bi-modal distribution that is rotated slightly counterclock-
wise and has a higher scatter for the southeasterly winds
(Fig. 10d). The comparison of the probability density func-
tions of WRF LR and WRF HR (Fig. 10a) highlights a large
disagreement, with an overestimation (respectively, underes-
timation) of the occurrence of lighter (respectively, stronger)
winds in WRF LR, which is generalized to all the directions
according to Fig. 10d and e. This is consistent with the re-
sults depicted in Fig. 8 (underestimation of the ridge acceler-
ation effect). The CNN corrects both the speed and direction
(Fig. 10a, c and f). The probability density functions of the
CNN and WRF HR are very close, even for strong speeds
(whereas WRF LR is unable to predict any wind speed over
15 m s−1 at this site), and the corresponding wind roses look
very similar for all directions.
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Figure 10. Same as Fig. 9 for a crest location.

Figure 11. Same as Fig. 9a, b and c for the whole domain.

Based on those results, it seems that some of the conclu-
sions made upon the analysis of Figs. 7 and 8 (better repre-
sentation of the ridge acceleration and the channeling in val-
leys) can be generalized to the whole period. Moreover, there
is a global improvement of the wind speed climatology over
the whole domain (Fig. 11). The probability density func-
tions for the CNN and WRF HR are very close (Fig. 11a),
while for WRF LR, winds under 3 m s−1 were too frequent
(and therefore winds over 3 m s−1 were too rare). The scatter
plots (Fig. 11b and c) also demonstrate a better agreement
after downscaling, with a concentration of data around the

x = y line. We will now investigate whether the results il-
lustrated in Figs. 9 and 10 could be generalized to the other
areas of the domain.

First of all, the mean speed (over the whole period of sim-
ulation) from the HR WRF forecast (Fig. 12f) features some
expected patterns related to the topography, such as max-
ima over the highest topographical elements (ridge accelera-
tion) and minima in valleys (sheltering). The WRF LR mean
speed is generally underestimated over a large part of the do-
main (Fig. 12d), resulting in a global MBE of −0.55 m s−1

(see Fig. 4b), with the largest negative biases correspond-
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Figure 12. Summary of wind speed metrics averaged over the whole period available (from 24 December 2020 to 5 May 2022). Mean
absolute error (MAE, a, b), mean bias error (MBE, d, e) and Wasserstein distance (WD, g, h) for the WRF LR forecast and the CNN,
respectively. Panels (c) and (i) show the modification brought about by the CNN with respect to WRF LR (negative values for improvements)
in terms of the MAE and WD, respectively. Panel (f) shows the mean wind speed calculated from the HR forecast.

ing to crests. Indeed, the ridge acceleration (see the mean
wind speed maxima from WRF HR in Fig. 12f over the Mont
Ventoux, the Lure mountain, the Luberon mountain, etc.) is
underestimated in WRF LR, resulting in large negative bias
values (Fig. 12d). This is consistent with the results over the
crest site depicted in Fig. 10. The CNN is able to reproduce
the features of the mean wind speed since the MBE is low
over most of the domain (Fig. 12e), resulting in a global MBE
close to zero (see Fig. 4b).

In WRF LR, the largest MAE values are related to the
largest topographic features: high mountains for the speed,
where the ridge acceleration is the most important (Fig. 12a),

and valleys for the direction, where the channeling cannot
be represented without a fine description of the topography
(Fig. 13a). The CNN either reduces or at least does not de-
grade the MAE over the main part of the domain (the only
exception being in the southwestern corner, which corre-
sponds to a pond area) for both the speed and direction, with
larger improvements (in dark blue in Figs. 12c and 13c) cor-
responding to regions originally featuring the largest errors
in WRF LR.

The WD results indicate that, in WRF LR, the wind cli-
matology is the worst either over the crests for the speed
(Fig. 12g), resulting from the large underestimation of ridge
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Figure 13. Same as Fig. 12 for wind direction metrics and restricted to the MAE (a, b, c) and the WD (d, e, f).

acceleration, or in the valleys for the direction (Fig. 13g),
resulting from a lack of channeling, which is consistent with
the MAE results. The improvement in wind direction brought
about by the CNN is translated into a very similar appearance
of the MAE (Fig. 13c) or WD (Fig. 13f) field. For the wind
speed, there is no similar consensus between the two metrics:
the overall structures of the improvement field resemble each
other for the MAE (Fig. 12c) and WD (Fig. 12i), but there are
local differences, with some spots even reflecting a degrada-
tion of the performance evaluated by the WD, as revealed by
a few red cells in Fig. 12i. Note that the corresponding MAEs
(Fig. 12c) are not degraded at these places. Therefore, from a
climatological point of view, WRF LR has mostly a direction
issue in valleys and mostly a speed issue over crests, which is
consistent with the results of Figs. 9 and 10, and these short-
comings are well corrected by the CNN.

3.4 Diurnal cycle

In this section, we examine how the different metrics evolve
according to the time elapsed since the launch of the daily
simulations. The results, shown in Fig. 14, represent the
average of all the simulations used. Concerning WRF LR,
the MAE exhibits a clear diurnal cycle for both the speed
(Fig. 14a) and the direction (Fig. 14c), with higher values
during the night. This can be explained by the fact that, un-
der stable nocturnal conditions, flows are highly dependent
on the local topography, resulting in a high spatial hetero-
geneity (green lines in Fig. 14b and d for the speed and

direction, respectively). After downscaling, the MAE is re-
duced for all times, and its diurnal cycle remains, although
its magnitude is reduced due to a greater improvement dur-
ing the nighttime when the higher errors were encountered.
The nocturnal evolution of the MAE generally exhibits two
maxima, at the evening and morning transitions (even if this
effect is smoothed on the graphic due to seasonal effect), ex-
cept for the MAE of the direction in WRF LR, which in-
creases slightly towards its maxima reached at the morning
transition. Morning and evening transitions are known to be
highly difficult periods to forecast, especially for wind pa-
rameters which can experience a high temporal variability,
which could explain these error maxima.

Note that the lower spatial heterogeneity values encoun-
tered in WRF LR in comparison with those in WRF HR,
which is consistent with the results presented on Figs. 7
and 8, were expected since the local topography is not re-
solved in this simulation. The CNN increases the spatial het-
erogeneity in comparison with WRF LR (also consistent with
Figs. 7 and 8) but not enough to reach the values of the HR
forecast, demonstrating that the downscaled forecast is still
too smooth. A way to improve this issue would be to use a
GAN, which is a specific kind of CNN designed to produce
very realistic fields (see, for example, Miralles et al., 2022).
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Figure 14. Evolution of the MAE for the speed (a) and direction
(c) for lead times from 12 to 72 h of the WRF LR forecast (in red)
and the CNN (in blue). In these panels, the solid line represents the
median value, the dark area is the 25th to 75th quantile interval, and
the light areas are the whiskers according to the boxplot construc-
tion based on the bootstrap distribution, as explained in Sect. 2.4.
Panels (b) and (d) represent the time evolution of the heterogeneity
(see Sect. 2.4) for the speed and the direction, respectively.

4 Conclusions

CNNs are becoming the most popular deep learning tool, and
their specialization for extracting spatial information is well
suited to use in atmospheric sciences. Recent studies demon-
strated their ability to downscale wind forecasts. In this study,
we aimed to move forward in this question by exploring dif-
ferent strategies for downscaling low-level wind forecasts us-
ing CNNs, especially regarding the output variables and their
associated loss function.

The downscaling was applied to WRF wind forecasts over
southeastern France (including the southwestern part of the
Alps) from its original 9 km resolution onto a 1 km resolution
grid. The 1 km resolution data used for training consist of

a series of WRF simulations over a 99 km×99 km domain,
launched for each day of a 16-month period.

Among the approaches tested (i.e., computing the wind
components, the normalized components or the wind direc-
tion using the MSE loss function in its classical version or
with specific adaptations), there is not one that outperforms
the others for both the direction and the speed at the same
time. Nevertheless, combining two different CNNs dedicated
to the direction and speed forecast yields the better overall
performance. The best direction forecast is derived from the
normalized components, which we found to be more accu-
rate when the loss function is customized by adding a penalty
term designed to produce a more physically consistent cou-
ple of components. The best speed forecast is derived from
the wind components using a modified MSE loss function
designed to remove the speed bias, even if the performance
for the individual components is degraded.

In comparison with the initial 9 km resolution forecast,
the CNN reduced the wind speed bias from −0.55 to
−0.01 m s−1, the wind speed MAE from 1.02 to 0.69 m s−1

and the wind direction MAE from 25.9 to 15.5◦. Moreover,
some typical topographical features, poorly represented in
the LR forecast, are well reproduced in the downscaled wind
fields, both for speed (ridge acceleration, leeward decelera-
tion, sheltering in valleys) and direction (deflection, valley
channeling). Regarding the diurnal cycle, there is a general
improvement in the forecast, especially during the nighttime,
stable stratification period, which is the most difficult to sim-
ulate. Finally, the downscaling creates a spatial heterogene-
ity in the wind fields but not at the same level as in the HR
forecast. In the future, this issue could be solved by using
generative networks, which are specifically designed to pro-
duce realistic fields, but with the risk of impacting the overall
performance.

We will extend this study by evaluating the performance
of the method presented in this paper when applying it over
areas other than those where the CNNs have been trained.
The first tests already performed have shown an improve-
ment over the initial low-resolution wind fields, although this
improvement is much less than that obtained over the area of
the present study.
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