Articles | Volume 30, issue 2
https://doi.org/10.5194/npg-30-195-2023
https://doi.org/10.5194/npg-30-195-2023
Research article
 | 
28 Jun 2023
Research article |  | 28 Jun 2023

Data-driven methods to estimate the committor function in conceptual ocean models

Valérian Jacques-Dumas, René M. van Westen, Freddy Bouchet, and Henk A. Dijkstra

Related authors

Explaining the high skill of Reservoir Computing methods in El Niño prediction
Francesco Guardamagna, Claudia Wieners, and Henk Dijkstra
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-24,https://doi.org/10.5194/npg-2024-24, 2024
Preprint under review for NPG
Short summary
Dynamics of salt intrusion in complex estuarine networks; an idealised model applied to the Rhine-Meuse Delta
Bouke Biemond, Wouter Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-2322,https://doi.org/10.5194/egusphere-2024-2322, 2024
Short summary
Similar North Pacific variability despite suppressed El Niño variability in the warm mid-Pliocene climate
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Frank M. Selten, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1037–1054, https://doi.org/10.5194/esd-15-1037-2024,https://doi.org/10.5194/esd-15-1037-2024, 2024
Short summary
Observation based temperature and freshwater noise over the Atlantic Ocean
Amber A. Boot and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-2431,https://doi.org/10.5194/egusphere-2024-2431, 2024
Short summary
AMOC stability amid tipping ice sheets: the crucial role of rate and noise
Sacha Sinet, Peter Ashwin, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 859–873, https://doi.org/10.5194/esd-15-859-2024,https://doi.org/10.5194/esd-15-859-2024, 2024
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Learning extreme vegetation response to climate drivers with recurrent neural networks
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024,https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary

Cited articles

Altman, N. S.: An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression, Am. Stat., 46, 175–185, https://doi.org/10.1080/00031305.1992.10475879, 1992. a
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and Lenton, T. M.: Exceeding 1.5 C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, https://doi.org/10.1126/science.abn7950, 2022. a
Baars, S., Castellana, D., Wubs, F., and Dijkstra, H.: Application of adaptive multilevel splitting to high-dimensional dynamical systems, J. Comput. Phys., 424, 109876, https://doi.org/10.1016/j.jcp.2020.109876, 2021. a, b
Benedetti, R.: Scoring Rules for Forecast Verification, Mon. Weather Rev., 138, 203–211, https://doi.org/10.1175/2009MWR2945.1, 2010. a, b
Bentley, J. L.: Multidimensional Binary Search Trees Used for Associative Searching, Commun. ACM, 18, 509–517, https://doi.org/10.1145/361002.361007, 1975. a
Download
Short summary
Computing the probability of occurrence of rare events is relevant because of their high impact but also difficult due to the lack of data. Rare event algorithms are designed for that task, but their efficiency relies on a score function that is hard to compute. We compare four methods that compute this function from data and measure their performance to assess which one would be best suited to be applied to a climate model. We find neural networks to be most robust and flexible for this task.