Articles | Volume 30, issue 2
https://doi.org/10.5194/npg-30-195-2023
https://doi.org/10.5194/npg-30-195-2023
Research article
 | 
28 Jun 2023
Research article |  | 28 Jun 2023

Data-driven methods to estimate the committor function in conceptual ocean models

Valérian Jacques-Dumas, René M. van Westen, Freddy Bouchet, and Henk A. Dijkstra

Related authors

Dynamics of salt intrusion in complex estuarine networks: an idealised model applied to the Rhine–Meuse Delta
Bouke Biemond, Wouter M. Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
Ocean Sci., 21, 261–281, https://doi.org/10.5194/os-21-261-2025,https://doi.org/10.5194/os-21-261-2025, 2025
Short summary
A Saddle-Node Bifurcation is Causing the AMOC Collapse in the Community Earth System Model
René M. van Westen, Elian Vanderborght, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-14,https://doi.org/10.5194/egusphere-2025-14, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Physical characterization of the boundary separating safe and unsafe AMOC overshoot behaviour
Aurora Faure Ragani and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-45,https://doi.org/10.5194/egusphere-2025-45, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Observation-based temperature and freshwater noise over the Atlantic Ocean
Amber A. Boot and Henk A. Dijkstra
Earth Syst. Dynam., 16, 115–150, https://doi.org/10.5194/esd-16-115-2025,https://doi.org/10.5194/esd-16-115-2025, 2025
Short summary
Potential effect of the marine carbon cycle on the multiple equilibria window of the Atlantic Meridional Overturning Circulation
Amber A. Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1567–1590, https://doi.org/10.5194/esd-15-1567-2024,https://doi.org/10.5194/esd-15-1567-2024, 2024
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Learning extreme vegetation response to climate drivers with recurrent neural networks
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024,https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Statistical and neural network assessment of climatological features of fog and mist at Pula airport in Croatia: from local to synoptic scale
Marko Zoldoš, Tomislav Džoić, Jadran Jurković, Frano Matić, Sandra Jambrošić, Ivan Ljuština, and Maja Telišman Prtenjak
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-18,https://doi.org/10.5194/npg-2024-18, 2024
Revised manuscript accepted for NPG
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary

Cited articles

Altman, N. S.: An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression, Am. Stat., 46, 175–185, https://doi.org/10.1080/00031305.1992.10475879, 1992. a
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and Lenton, T. M.: Exceeding 1.5 C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, https://doi.org/10.1126/science.abn7950, 2022. a
Baars, S., Castellana, D., Wubs, F., and Dijkstra, H.: Application of adaptive multilevel splitting to high-dimensional dynamical systems, J. Comput. Phys., 424, 109876, https://doi.org/10.1016/j.jcp.2020.109876, 2021. a, b
Benedetti, R.: Scoring Rules for Forecast Verification, Mon. Weather Rev., 138, 203–211, https://doi.org/10.1175/2009MWR2945.1, 2010. a, b
Bentley, J. L.: Multidimensional Binary Search Trees Used for Associative Searching, Commun. ACM, 18, 509–517, https://doi.org/10.1145/361002.361007, 1975. a
Download
Short summary
Computing the probability of occurrence of rare events is relevant because of their high impact but also difficult due to the lack of data. Rare event algorithms are designed for that task, but their efficiency relies on a score function that is hard to compute. We compare four methods that compute this function from data and measure their performance to assess which one would be best suited to be applied to a climate model. We find neural networks to be most robust and flexible for this task.
Share