Articles | Volume 29, issue 2
https://doi.org/10.5194/npg-29-171-2022
https://doi.org/10.5194/npg-29-171-2022
Research article
 | Highlight paper
 | 
02 May 2022
Research article | Highlight paper |  | 02 May 2022

Using neural networks to improve simulations in the gray zone

Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, and George Craig

Related authors

Influence of radiosonde observations on the sharpness and altitude of the midlatitude tropopause in the ECMWF IFS
Konstantin Krüger, Andreas Schäfler, Martin Weissmann, and George C. Craig
EGUsphere, https://doi.org/10.5194/egusphere-2023-2094,https://doi.org/10.5194/egusphere-2023-2094, 2023
Short summary
The three-dimensional structure of fronts in mid-latitude weather systems in numerical weather prediction models
Andreas A. Beckert, Lea Eisenstein, Annika Oertel, Tim Hewson, George C. Craig, and Marc Rautenhaus
Geosci. Model Dev., 16, 4427–4450, https://doi.org/10.5194/gmd-16-4427-2023,https://doi.org/10.5194/gmd-16-4427-2023, 2023
Short summary
Understanding the dependence of mean precipitation on convective treatment in tropical aquachannel experiments
Hyunju Jung, Peter Knippertz, Yvonne Ruckstuhl, Robert Redl, Tijana Janjic, and Corinna Hoose
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2023-7,https://doi.org/10.5194/wcd-2023-7, 2023
Revised manuscript accepted for WCD
Short summary
The three-dimensional structure of fronts in mid-latitude weather systems as represented by numerical weather prediction models
Andreas Alexander Beckert, Lea Eisenstein, Annika Oertel, Timothy Hewson, George C. Craig, and Marc Rautenhaus
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-36,https://doi.org/10.5194/wcd-2022-36, 2022
Preprint withdrawn
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys., 28, 111–119, https://doi.org/10.5194/npg-28-111-2021,https://doi.org/10.5194/npg-28-111-2021, 2021
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Data-driven methods to estimate the committor function in conceptual ocean models
Valérian Jacques-Dumas, René M. van Westen, Freddy Bouchet, and Henk A. Dijkstra
Nonlin. Processes Geophys., 30, 195–216, https://doi.org/10.5194/npg-30-195-2023,https://doi.org/10.5194/npg-30-195-2023, 2023
Short summary
Downscaling of surface wind forecasts using convolutional neural networks
Florian Dupuy, Pierre Durand, and Thierry Hedde
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2023-13,https://doi.org/10.5194/npg-2023-13, 2023
Revised manuscript accepted for NPG
Short summary
Exploring meteorological droughts' spatial patterns across Europe through complex network theory
Domenico Giaquinto, Warner Marzocchi, and Jürgen Kurths
Nonlin. Processes Geophys., 30, 167–181, https://doi.org/10.5194/npg-30-167-2023,https://doi.org/10.5194/npg-30-167-2023, 2023
Short summary
A two-folds deep learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2023-10,https://doi.org/10.5194/npg-2023-10, 2023
Revised manuscript accepted for NPG
Short summary
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022,https://doi.org/10.5194/npg-29-301-2022, 2022
Short summary

Cited articles

Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L.: Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization, Foundations of Data Science, 2, 55–80, https://doi.org/10.3934/fods.2020004, 2020. a
Bolton, T. and Zanna, L.: Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization, J. Adv. Model. Earth Sy., 11, 376–399, https://doi.org/10.1029/2018MS001472, 2019. a
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, J. Comput. Sci., 44, 101171, https://doi.org/10.1016/j.jocs.2020.101171, 2020. a
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to infer unresolved scale parametrization, Philos. T. Roy. Soc. A, 379, 20200086, https://doi.org/10.1098/rsta.2020.0086, 2021. a
Brenowitz, N. D. and Bretherton, C. S.: Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse-Graining, J. Adv. Model. Earth Sy., 11, 2728–2744, https://doi.org/10.1029/2019MS001711, 2019. a, b
Download
Short summary
Our regional numerical weather prediction models run at kilometer-scale resolutions. Processes that occur at smaller scales not yet resolved contribute significantly to the atmospheric flow. We use a neural network (NN) to represent the unresolved part of physical process such as cumulus clouds. We test this approach on a simplified, yet representative, 1D model and find that the NN corrections vastly improve the model forecast up to a couple of days.