Articles | Volume 29, issue 2
Nonlin. Processes Geophys., 29, 171–181, 2022
https://doi.org/10.5194/npg-29-171-2022
Nonlin. Processes Geophys., 29, 171–181, 2022
https://doi.org/10.5194/npg-29-171-2022
Research article
 | Highlight paper
02 May 2022
Research article  | Highlight paper | 02 May 2022

Using neural networks to improve simulations in the gray zone

Raphael Kriegmair et al.

Related authors

The three-dimensional structure of fronts in mid-latitude weather systems as represented by numerical weather prediction models
Andreas A. Beckert, Lea Eisenstein, Annika Oertel, Tim Hewson, George C. Craig, and Marc Rautenhaus
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-278,https://doi.org/10.5194/gmd-2022-278, 2023
Preprint under review for GMD
Short summary
The three-dimensional structure of fronts in mid-latitude weather systems as represented by numerical weather prediction models
Andreas Alexander Beckert, Lea Eisenstein, Annika Oertel, Timothy Hewson, George C. Craig, and Marc Rautenhaus
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-36,https://doi.org/10.5194/wcd-2022-36, 2022
Preprint withdrawn
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys., 28, 111–119, https://doi.org/10.5194/npg-28-111-2021,https://doi.org/10.5194/npg-28-111-2021, 2021
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022,https://doi.org/10.5194/npg-29-301-2022, 2022
Short summary
Predicting sea surface temperatures with coupled reservoir computers
Benjamin Walleshauser and Erik Bollt
Nonlin. Processes Geophys., 29, 255–264, https://doi.org/10.5194/npg-29-255-2022,https://doi.org/10.5194/npg-29-255-2022, 2022
Short summary
The blessing of dimensionality for the analysis of climate data
Bo Christiansen
Nonlin. Processes Geophys., 28, 409–422, https://doi.org/10.5194/npg-28-409-2021,https://doi.org/10.5194/npg-28-409-2021, 2021
Short summary
Producing realistic climate data with generative adversarial networks
Camille Besombes, Olivier Pannekoucke, Corentin Lapeyre, Benjamin Sanderson, and Olivier Thual
Nonlin. Processes Geophys., 28, 347–370, https://doi.org/10.5194/npg-28-347-2021,https://doi.org/10.5194/npg-28-347-2021, 2021
Short summary
Identification of droughts and heatwaves in Germany with regional climate networks
Gerd Schädler and Marcus Breil
Nonlin. Processes Geophys., 28, 231–245, https://doi.org/10.5194/npg-28-231-2021,https://doi.org/10.5194/npg-28-231-2021, 2021
Short summary

Cited articles

Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L.: Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization, Foundations of Data Science, 2, 55–80, https://doi.org/10.3934/fods.2020004, 2020. a
Bolton, T. and Zanna, L.: Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization, J. Adv. Model. Earth Sy., 11, 376–399, https://doi.org/10.1029/2018MS001472, 2019. a
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, J. Comput. Sci., 44, 101171, https://doi.org/10.1016/j.jocs.2020.101171, 2020. a
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to infer unresolved scale parametrization, Philos. T. Roy. Soc. A, 379, 20200086, https://doi.org/10.1098/rsta.2020.0086, 2021. a
Brenowitz, N. D. and Bretherton, C. S.: Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse-Graining, J. Adv. Model. Earth Sy., 11, 2728–2744, https://doi.org/10.1029/2019MS001711, 2019. a, b
Download
Short summary
Our regional numerical weather prediction models run at kilometer-scale resolutions. Processes that occur at smaller scales not yet resolved contribute significantly to the atmospheric flow. We use a neural network (NN) to represent the unresolved part of physical process such as cumulus clouds. We test this approach on a simplified, yet representative, 1D model and find that the NN corrections vastly improve the model forecast up to a couple of days.