Articles | Volume 28, issue 3
Nonlin. Processes Geophys., 28, 445–465, 2021
https://doi.org/10.5194/npg-28-445-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Nonlinear internal waves
Research article
14 Sep 2021
Research article
| 14 Sep 2021
Enhanced diapycnal mixing with polarity-reversing internal solitary waves revealed by seismic reflection data
Yi Gong et al.
Related authors
Wenhao Fan, Haibin Song, Yi Gong, Shun Yang, and Kun Zhang
Nonlin. Processes Geophys., 29, 141–160, https://doi.org/10.5194/npg-29-141-2022, https://doi.org/10.5194/npg-29-141-2022, 2022
Short summary
Short summary
Compared with mode-1 internal solitary waves (ISWs), mode-2 ISWs in the ocean require further study. A mass of mode-2 ISWs developing at the Pacific coast of Central America have been imaged using seismic reflection data. We find that the relationship between the mode-2 ISW propagation speed and amplitude is diverse. It is affected by seawater depth, pycnocline depth, and pycnocline thickness. The ISW vertical amplitude structure is affected by the ISW nonlinearity and the pycnocline deviation.
Zhongxiang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2022-1029, https://doi.org/10.5194/egusphere-2022-1029, 2022
Short summary
Short summary
Satellite altimetry provides a unique technique for observing the sea surface height signature of internal tides from space. The advances in mapping technique, combined with the accumulation of satellite altimetry data, make it possible to construct empirical models for minor internal tide constituents. This paper demonstrates that N2 internal tides, the fifth largest tidal constituent, are observed using 100 satellite-years of SSH data from 1993 through 2019 by a new mapping procedure.
Wenhao Fan, Haibin Song, Yi Gong, Shun Yang, and Kun Zhang
Nonlin. Processes Geophys., 29, 141–160, https://doi.org/10.5194/npg-29-141-2022, https://doi.org/10.5194/npg-29-141-2022, 2022
Short summary
Short summary
Compared with mode-1 internal solitary waves (ISWs), mode-2 ISWs in the ocean require further study. A mass of mode-2 ISWs developing at the Pacific coast of Central America have been imaged using seismic reflection data. We find that the relationship between the mode-2 ISW propagation speed and amplitude is diverse. It is affected by seawater depth, pycnocline depth, and pycnocline thickness. The ISW vertical amplitude structure is affected by the ISW nonlinearity and the pycnocline deviation.
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, https://doi.org/10.5194/os-17-147-2021, 2021
Short summary
Short summary
Internal tides can have a signature of several centimeters at the ocean surface and need to be corrected from altimeter measurements. We present a detailed validation of several internal-tide models using existing satellite altimeter databases. The analysis focuses on the main diurnal and semidiurnal tidal constituents. Results show the interest of the methodology proposed, the quality of the internal-tide models tested and their positive contribution for estimating an accurate sea level.
Related subject area
Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Estimate of energy loss from internal solitary waves breaking on slopes
The effect of strong shear on internal solitary-like waves
Effects of upwelling duration and phytoplankton growth regime on dissolved-oxygen levels in an idealized Iberian Peninsula upwelling system
Kateryna Terletska and Vladimir Maderich
Nonlin. Processes Geophys., 29, 161–170, https://doi.org/10.5194/npg-29-161-2022, https://doi.org/10.5194/npg-29-161-2022, 2022
Short summary
Short summary
Internal solitary waves (ISWs) emerge in the ocean and seas in various forms and break on the shelf zones in a variety of ways. This results in intensive mixing that affects processes such as biological productivity and sediment transport. Mechanisms of wave interaction with slopes are related to breaking and changing polarity. Our study focuses on wave transformation over idealized shelf-slope topography using a two-layer stratification. Four types of ISW transformation over slopes are shown.
Marek Stastna, Aaron Coutino, and Ryan K. Walter
Nonlin. Processes Geophys., 28, 585–598, https://doi.org/10.5194/npg-28-585-2021, https://doi.org/10.5194/npg-28-585-2021, 2021
Short summary
Short summary
Large-amplitude waves in the interior of the ocean-internal waves in the ocean propagate in a dynamic, highly variable environment with changes in background current, local depth, and stratification. These waves have a well-known mathematical theory that, despite considerable progress, has some gaps. In particular, waves have been observed in situations that preclude an application of the mathematical theory. We present numerical simulations of the spontaneous generation of such waves.
João H. Bettencourt, Vincent Rossi, Lionel Renault, Peter Haynes, Yves Morel, and Véronique Garçon
Nonlin. Processes Geophys., 27, 277–294, https://doi.org/10.5194/npg-27-277-2020, https://doi.org/10.5194/npg-27-277-2020, 2020
Short summary
Short summary
The oceans are losing oxygen, and future changes may worsen this problem. We performed computer simulations of an idealized Iberian Peninsula upwelling system to identify the main fine-scale processes driving dissolved oxygen variability as well as study the response of oxygen levels to changes in wind patterns and phytoplankton species. Our results suggest that oxygen levels would decrease if the wind blows for long periods of time or if phytoplankton is dominated by species that grow slowly.
Cited articles
Aghsaee, P., Boegman, L., and Lamb, K. G.: Breaking of shoaling internal
solitary waves, J. Fluid Mech., 659, 289–317,
https://doi.org/10.1017/S002211201000248X, 2010.
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C.,
Centurioni, L. R., Chao, S.-Y., Chang, M.-H., Farmer, D. M., Fringer, O.
B., Fu, K.-H., Gallacher, P. C., Graber, H. C., Helfrich, K. R., Jachec, S.
M., Jackson, C. R., Klymak, J. M., Ko, D. S., Jan, S., Shaun Johnston, T.
M., Legg, S., Lee, I.-H., Lien, R.-C., Mercier, M. J., Moum, J. N.,
Musgrave, R., Park, J.-H., Pickering, A. I., Pinkel, R., Rainville, L.,
Ramp, S. R., Rudnick, D. L., Sarkar, S., Scotti, A., Simmons, H. L., St
Laurent, L. C., Venayagamoorthy, S. K., Wang, Y.-H., Wang, J., Yang, Y. J.,
Paluszkiewicz, T., and Tang, T.-Y.: The formation and fate of internal
waves in the South China Sea, Nature, 521, 65–69, https://doi.org/10.1038/nature14399, 2015.
Bai, Y., Song, H., Guan, Y., and Yang, S.: Estimating depth of polarity conversion of shoaling internal solitary waves in the northeastern South China Sea, Cont. Shelf Res., 143, 9–17, https://doi.org/10.1016/j.csr.2017.05.014,
2017.
Bogucki, D., Dickey, T., and Redekopp, L. G.: Sediment resuspension and
mixing by resonantly generated internal solitary waves, J. Phys. Oceanogr., 27, 1181–1196, https://doi.org/10.1175/1520-0485(1997)027<1181:SRAMBR>2.0.CO;2, 1997.
Bourgault, D., Blokhina, M. D., Mirshak, R., and Kelley, D. E.: Evolution of
a shoaling internal solitary wavetrain, Geophys. Res. Lett., 34, L03601,
https://doi.org/10.1029/2006gl028462, 2007.
Cai, S., Xie, J., and He, J.: An overview of internal solitary waves in the
South China Sea, Surv. Geophys., 33, 927–943, https://doi.org/10.1007/s10712-012-9176-0, 2012.
Carter, G. S., Gregg, M. C., and Lien, R.-C.: Internal waves, solitary-like
waves, and mixing on the Monterey Bay shelf, Cont. Shelf Res., 25,
1499–1520, https://doi.org/10.1016/j.csr.2005.04.011, 2005.
Chang, M.-H., Lien, R.-C., Tang, T. Y., D'Asaro, E. A., and Yang, Y. J.:
Energy flux of nonlinear internal waves in northern South China Sea,
Geophys. Res. Lett., 33, L03607, https://doi.org/10.1029/2005gl025196, 2006.
Chang, M.-H., Jheng, S.-Y., and Lien, R.-C.: Trains of large
Kelvin-Helmholtz billows observed in the Kuroshio above a seamount,
Geophys. Res. Lett., 43, 8654–8661, https://doi.org/10.1002/2016gl069462, 2016.
Dickinson, A., White, N. J., and Caulfield, C. P.: Spatial variation of
diapycnal diffusivity estimated from seismic imaging of internal wave field,
Gulf of Mexico, J. Geophys. Res.-Oceans, 122, 9827–9854,
https://doi.org/10.1002/2017jc013352, 2017.
Fan, W., Song, H., Gong, Y., Sun, S., Zhang, K., Wu, D., Kuang, Y., and
Yang, S.: The shoaling mode-2 internal solitary waves in the Pacific coast
of Central America investigated by marine seismic survey data, Cont. Shelf Res., 212, 104318, https://doi.org/10.1016/j.csr.2020.104318, 2021.
Farmer, D. and Smith, J. D.: Nonlinear internal waves in a fjord, in: Elsevier Oceanography Series, edited by: Jacques, C. J. N., Elsevier, Amsterdam, Netherlands, 465–493, https://doi.org/10.1016/S0422-9894(08)71294-7, 1978.
Fortin, W. F. J., Holbrook, W. S., and Schmitt, R. W.: Mapping turbulent diffusivity associated with oceanic internal lee waves offshore Costa Rica, Ocean Sci., 12, 601–612, https://doi.org/10.5194/os-12-601-2016, 2016.
GEBCO Bathymetric Compilation Group: The GEBCO_2021 Grid – a continuous terrain model of the globel oceans and land, NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f, 2021.
Gregg, M. C. and Özsoy, E.: Mixing on the Black Sea Shelf north of the
Bosphorus, Geophys. Res. Lett., 26, 1869–1872, https://doi.org/10.1029/1999gl900431, 1999.
Grimshaw, R., Pelinovsky, E., Talipova, T., and Kurkina, O.: Internal solitary waves: propagation, deformation and disintegration, Nonlin. Processes Geophys., 17, 633–649, https://doi.org/10.5194/npg-17-633-2010, 2010.
Haren, H. v., Gostiaux, L., Morozov, E., and Tarakanov, R.: Extremely long
Kelvin-Helmholtz billow trains in the Romanche Fracture Zone, Geophys. Res. Lett., 41, 8445–8451, https://doi.org/10.1002/2014GL062421, 2014.
Holbrook, W. S., Páramo, P., Pearse, S., and Schmitt, R. W.:
Thermohaline fine structure in an oceanographic front from seismic
reflection profiling, Science, 301, 821–824, https://doi.org/10.1126/science.1085116, 2003.
Holbrook, W. S., Fer, I., Schmitt, R. W., Lizarralde, D., Klymak, J. M.,
Helfrich, L. C., and Kubichek, R.: Estimating oceanic turbulence dissipation
from seismic images, J. Atmos. Ocean. Tech., 30,
1767–1788, https://doi.org/10.1175/jtech-d-12-00140.1, 2013.
Holloway, P. E.: A regional model of the semidiurnal internal tide on the
Australian North West Shelf, J. Geophys. Res.-Oceans, 106,
19625–19638, https://doi.org/10.1029/2000jc000675, 2001.
Holloway, P. E., Pelinovsky, E., and Talipova, T.: A generalized Korteweg-de
Vries model of internal tide transformation in the coastal zone, J. Geophys. Res.-Oceans, 104, 18333–18350, https://doi.org/10.1029/1999jc900144, 1999.
Jan, S., Chern, C.-S., Wang, J., and Chiou, M.-D.: Generation and propagation
of baroclinic tides modified by the Kuroshio in the Luzon Strait, J. Geophys. Res., 117, C02019, https://doi.org/10.1029/2011JC007229, 2012.
Jarosz, E., Teague, W. J., Book, J. W., and Beşiktepe, Ş. T.:
Observed volume fluxes and mixing in the Dardanelles Strait, J. Geophys. Res.-Oceans, 118, 5007–5021, https://doi.org/10.1002/jgrc.20396, 2013.
Klymak, J. M. and Legg, S. M.: A simple mixing scheme for models that
resolve breaking internal waves, Ocean Model., 33, 224–234, https://doi.org/10.1016/j.ocemod.2010.02.005, 2010.
Klymak, J. M. and Moum, J. N.: Internal solitary waves of elevation
advancing on a shoaling shelf, Geophys. Res. Lett., 30, 2045,
https://doi.org/10.1029/2003gl017706, 2003.
Klymak, J. M. and Moum, J. N.: Oceanic isopycnal slope spectra. Part II:
Turbulence, J. Phys. Oceanogr., 37, 1232–1245, https://doi.org/10.1175/jpo3074.1, 2007.
Klymak, J. M., Pinkel, R., Liu, C.-T., Liu, A. K., and David, L.:
Prototypical solitons in the South China Sea, Geophys. Res. Lett.,
33, L11607, https://doi.org/10.1029/2006gl025932, 2006.
Klymak, J. M., Pinkel, R., and Rainville, L.: Direct breaking of the
internal tide near topography: Kaena Ridge, Hawaii, J. Phys. Oceanogr., 38, 380–399, https://doi.org/10.1175/2007jpo3728.1, 2008.
Kunze, E.: Internal-wave-driven mixing: global geography and budgets,
J. Phys. Oceanogr., 47, 1325–1345, https://doi.org/10.1175/jpo-d-16-0141.1, 2017.
Liu, A. K., Chang, Y. S., Hsu, M.-K., and Liang, N. K.: Evolution of
nonlinear internal waves in the East and South China Seas, J. Geophys. Res.-Oceans, 103, 7995–8008, https://doi.org/10.1029/97jc01918, 1998.
MacKinnon, J. A. and Gregg, M. C.: Mixing on the late-summer new England
shelf – solibores, shear, and stratification, J. Phys. Oceanogr., 33, 1476–1492, https://doi.org/10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2, 2003.
Mashayek, A., Salehipour, H., Bouffard, D., Caulfield, C. P., Ferrari, R.,
Nikurashin, M., Peltier, W. R., and Smyth, W. D.: Efficiency of turbulent
mixing in the abyssal ocean circulation, Geophys. Res. Lett., 44,
6296–6306, https://doi.org/10.1002/2016GL072452, 2017.
Masunaga, E., Arthur, R. S., and Fringer, O. B.: Internal wave breaking
dynamics and associated mixing in the Coastal Ocean, encyclopedia of Ocean
Science, 3rd edn., Academic Press, Cambridge, UK, 548–554, https://doi.org/10.1016/b978-0-12-409548-9.10953-4, 2019.
Min, W., Li, Q., Zhang, P., Xu, Z., and Yin, B.: Generation and evolution of
internal solitary waves in the southern Taiwan Strait, Geophys. Astro. Fluid, 13, 287–302, https://doi.org/10.1080/03091929.2019.1590568, 2019.
Mojica, J. F., Sallarès, V., and Biescas, B.: High-resolution diapycnal mixing map of the Alboran Sea thermocline from seismic reflection images, Ocean Sci., 14, 403–415, https://doi.org/10.5194/os-14-403-2018, 2018.
Moum, J. N., Farmer, D., M, Smyth, W., D, Armi, L., and Vagle, S.: Structure
and generation of turbulence at interfaces strained by internal solitary
waves propagating shoreward over the continental shelf, J. Phys. Oceanogr., 33, 2093–2112, https://doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2, 2003.
Moum, J. N., Farmer, D. M., Shroyer, E. L., Smyth, W. D., and Armi, L.:
Dissipative losses in nonlinear internal waves propagating across the
Continental Shelf, J. Phys. Oceanogr., 37, 1989–1995,
https://doi.org/10.1175/jpo3091.1, 2007a.
Moum, J. N., Klymak, J. M., Nash, J. D., Perlin, A., and Smyth, W. D.:
Energy transport by nonlinear internal waves, J. Phys. Oceanogr., 37, 1968–1988, https://doi.org/10.1175/jpo3094.1,
2007b.
Nakamura, Y., Noguchi, T., Tsuji, T., Itoh, S., Niino, H., and Matsuoka, T.:
Simultaneous seismic reflection and physical oceanographic observations of
oceanic fine structure in the Kuroshio extension front, Geophys. Res. Lett., 33, L23605, https://doi.org/10.1029/2006gl027437, 2006.
Nandi, P., Holbrook, W. S., Pearse, S., Páramo, P., and Schmitt, R. W.:
Seismic reflection imaging of water mass boundaries in the Norwegian Sea,
Geophys. Res. Lett., 31, 345–357, https://doi.org/10.1029/2004GL021325, 2004.
Nash, J. D. and Moum, J. N.: Internal hydraulic flows on the continental
shelf High drag states over a small bank, J. Geophys. Res.,
106, 4593–4611, https://doi.org/10.1029/1999JC000183, 2001.
Orr, M. H. and Mignerey, P. C.: Nonlinear internal waves in the South China
Sea: Observation of the conversion of depression internal waves to elevation
internal waves, J. Geophys. Res., 108, 3064, https://doi.org/10.1029/2001jc001163, 2003.
Osborn, T. R.: Estimates of the local rate of vertical diffusion from
dissipation measurements, J. Phys. Oceanogr., 10, 83–89,
https://doi.org/10.1175/1520-0485(1980)010<0083:Eotlro>2.0.Co;2, 1980.
Pacanowski, R. and Philander, S.: Parameterization of vertical mixing in
numerical models of tropical oceans, J. Phys. Oceanogr., 11,
1443–1451, https://doi.org/10.1175/1520-0485(1981)011<1443:povmin>2.0.co;2, 1981.
Palmer, M. R., Inall, M. E., and Sharples, J.: The physical oceanography of
Jones Bank: A mixing hotspot in the Celtic Sea, Prog. Oceanogr.,
117, 9–24, https://doi.org/10.1016/j.pocean.2013.06.009, 2013.
Park, J.-H., and Farmer, D.: Effects of Kuroshio intrusions on nonlinear
internal waves in the South China Sea during winter, J. Geophys. Res.-Oceans, 118, 7081–7094, https://doi.org/10.1002/2013JC008983, 2013.
Rahmstorf, S.: Thermohaline circulation: The current climate, Nature, 421, p. 699,
https://doi.org/10.1038/421699a, 2003.
Richards, C., Bourgault, D., Galbraith, P. S., Hay, A., and Kelley, D. E.:
Measurements of shoaling internal waves and turbulence in an estuary,
J. Geophys. Res.-Oceans, 118, 273–286, https://doi.org/10.1029/2012jc008154, 2013.
Rippeth, T. P., Fisher, N. R., and Simpson, J. H.: The cycle of turbulent
dissipation in the presence of tidal straining, J. Phys.
Oceanogr., 31, 2458–2471, https://doi.org/10.1175/1520-0485(2001)031<2458:TCOTDI>2.0.CO;2, 2001.
Rippeth, T. P., Simpson, J. H., Williams, E., and Inall, M. E.: Measurement
of the rates of production and dissipation of turbulent kinetic energy in an
energetic tidal flow Red Wharf Bay revisited, J. Phys. Oceanogr., 33, 1889–1901, https://doi.org/10.1175/1520-0485(2003)033<1889:MOTROP>2.0.CO;2, 2003.
Ruddick, B., Song, H., Dong, C., and Pinheiro, L.: Water column seismic
images as maps of temperature gradient, Oceanography, 21, 192–205,
https://doi.org/10.5670/oceanog.2009.19, 2009.
Sallarès, V., Biescas, B., Buffett, G., Carbonell, R., Dañobeitia,
J. J., and Pelegrí, J. L.: Relative contribution of temperature and
salinity to ocean acoustic reflectivity, Geophys. Res. Lett., 36, L00D06,
https://doi.org/10.1029/2009gl040187, 2009.
Sallarès, V., Mojica, J. F., Biescas, B., Klaeschen, D., and Gràcia,
E.: Characterization of the submesoscale energy cascade in the Alboran Sea
thermocline from spectral analysis of high-resolution MCS data, Geophys. Res. Lett., 43, 6461–6468, https://doi.org/10.1002/2016GL069782, 2016.
Sandstrom, H. and Oakey, N. S.: Dissipation in internal tides and solitary
waves, J. Phys. Oceanogr., 25, 604–614, https://doi.org/10.1175/1520-0485(1995)025<0604:DIITAS>2.0.CO;2, 1995.
Sandstrom, H., Elliot, J. A., and Cchrane, N. A.: Observing groups of
solitary internal waves and turbulence with BATFISH and Echo-Sounder,
J. Phys. Oceanogr., 19, 987–997, https://doi.org/10.1175/1520-0485(1989)019<0987:OGOSIW>2.0.CO;2, 1989.
Seim, H. E. and Gregg, M. C.: Detailed observations of a naturally occurring
shear instability, J. Geophys. Res., 99, 10049, https://doi.org/10.1029/94jc00168, 1994.
Sharples, J., Moore, C. M., and Abraham, E. R.: Internal tide dissipation,
mixing, and vertical nitrate flux at the shelf edge of NE New Zealand,
J. Geophys. Res.-Oceans, 106, 14069–14081, https://doi.org/10.1029/2000jc000604, 2001.
Sheen, K. L., White, N. J., and Hobbs, R. W.: Estimating mixing rates from
seismic images of oceanic structure, Geophys. Res. Lett., 36, L00D04,
https://doi.org/10.1029/2009gl040106, 2009.
Shroyer, E. L., Moum, J. N., and Nash, J. D.: Observations of polarity reversal in shoaling nonlinear internal waves, J. Phys. Oceanogr., 39, 691–701, https://doi.org/10.1175/2008JPO3953.1, 2008.
Simpson, J. H., Crawford, W. R., Rippeth, T. P., Campbell, A. R., and Cheok,
J. V. S.: The vertical structure of turbulent dissipation in shelf seas,
J. Phys. Oceanogr., 26, 1579–1590, https://doi.org/10.1175/1520-0485(1996)026<1579:TVSOTD>2.0.CO;2, 1996.
Sreenivasan, K. R.: The passive scalar spectrum and the Obukhov–Corrsin
constant, Phys. Fluids, 8, 189–196, https://doi.org/10.1063/1.868826, 1996.
Staalstrøm, A., Arneborg, L., Liljebladh, B., and Broström, G.:
Observations of turbulence caused by a combination of tides and mean
baroclinic flow over a Fjord Sill, J. Phys. Oceanogr., 45,
355–368, https://doi.org/10.1175/jpo-d-13-0200.1, 2015.
St. Laurent, L.: Turbulent dissipation on the margins of the South China
Sea, Geophys. Res. Lett., 35, L23615, https://doi.org/10.1029/2008gl035520, 2008.
St. Laurent, L., Simmons, H., Tang, T. Y., and Wang, Y.: Turbulent properties
of internal waves in the South China Sea, Oceanography, 24, 78–87,
https://doi.org/10.5670/oceanog.2011.96, 2011.
Stockwell Jr., J. W.: The CWP/SU: Seismic Unix package, Comput. Geosci., 25, 415–419, https://doi.org/10.1016/S0098-3004(98)00145-9, 1999.
Tang, Q., Wang, C., Wang, D., and Pawlowicz, R.: Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea, Sci. Rep., 4, 5374, https://doi.org/10.1038/srep05374, 2014.
Tang, Q., Hobbs, R., Wang, D., Sun, L., Zheng, C., Li, J., and Dong, C.: Marine seismic observation of internal solitary wave packets in the northeast South China Sea, J. Geophys. Res.-Oceans, 120, 8487–8503, https://doi.org/10.1002/2015jc011362, 2015.
Tang, Q., Gulick, S. P. S., Sun, J., Sun, L., and Jing, Z.: Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the Gulf of Alaska investigated by marine seismic survey data, J. Geophys. Res.-Oceans, 125, e2019JC015393, https://doi.org/10.1029/2019jc015393, 2020.
Terletska, K., Choi, B. H., Maderich, V., and Talipova, T.: Classification
of internal waves shoaling over slope-shelf topography, Russian Journal of
Earth Science, 20, ES4002, https://doi.org/10.2205/2020ES000730, 2020.
Tian, J., Yang, Q., and Zhao, W.: Enhanced diapycnal mixing in the South
China Sea, J. Phys. Oceanogr., 39, 3191–3203, https://doi.org/10.1175/2009jpo3899.1, 2009.
Tu, J., Fan, D., Lian, Q., Liu, Z., Liu, W., Kaminski, A., and Smyth, W.:
Acoustic observations of Kelvin-Helmholtz billows on an Estuarine
Lutocline, J. Geophys. Res.-Oceans, 125, e2019JC015383, https://doi.org/10.1029/2019jc015383, 2019.
Vlasenko, V. and Hutter, K.: Numerical experiments on the breaking of
solitary internal waves over a slope–shelf topography, J. Phys. Oceanogr., 32, 1779–1793, https://doi.org/10.1175/1520-0485(2002)032<1779:NEOTBO>2.0.CO;2, 2002.
Voet, G., Alford, M. H., MacKinnon, J. A., and Nash, J. D.: Topographic form
drag on tides and low-frequency flow: observations of nonlinear lee waves
over a Tall Submarine Ridge near Palau, J. Phys. Oceanogr.,
50, 1489–1507, https://doi.org/10.1175/jpo-d-19-0257.1, 2020.
Wang, Y.-H., Dai, C.-F., and Chen, Y.-Y.: Physical and ecological processes
of internal waves on an isolated reef ecosystem in the South China Sea,
Geophys. Res. Lett., 34, L18609, https://doi.org/10.1029/2007gl030658, 2007.
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., Polzin, K. L., St. Laurent, L. C., Sun, O. M., Pinkel, R., Talley, L. D., Whalen, C. B., Huussen, T. N., Carter, G. S., Fer, I., Waterman, S., Garabato, A. C. N., Sanford, T. B., Lee, C. M.: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate, J. Phys. Oceanogr., 44, 1854–1872, https://doi.org/10.1175/jpo-d-13-0104.1, 2014.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools version 6, Geochem. Geophy. Geosy., 20, 5556–5564, https://doi.org/10.1029/2019/2019GC008515, 2019.
Whalen, C. B., Talley, L. D., and MacKinnon, J. A.: Spatial and temporal
variability of global ocean mixing inferred from Argo profiles,
Geophys. Res. Lett., 39, L18612, https://doi.org/10.1029/2012gl053196,
2012.
Wijesekera, H. W., Wesson, J. C., Wang, D. W., Teague, W. J., and Hallock,
Z. R.: Observations of flow separation and mixing around the Northern Palau
Island/Ridge, J. Phys. Oceanogr., 50, 2529–2559, https://doi.org/10.1175/jpo-d-19-0291.1, 2020.
Xu, Z., Yin, B., Hou, Y., Fan, Z., and Liu, A. K.: A study of internal
solitary waves observed on the continental shelf in the northwestern South
China Sea, Acta Oceanol. Sin., 29, 18–25, https://doi.org/10.1007/s13131-010-0033-z, 2010.
Xu, Z., Liu, K., Yin, B., Zhao, Z., Wang, Y., and Li, Q.: Long-range
propagation and associated variability of internal tides in the South China
Sea, J. Geophys. Res.-Oceans, 121, 8268–8286, https://doi.org/10.1002/2016JC012105, 2016.
Xu, Z., Wang, Y., Liu, Z., McWilliams, J. C., and Gan, J.: Insight into the
dynamics of the radiating internal tide associated with the Kuroshio
Current, J. Geophys. Res.-Oceans, 126, e2020JC017018,
https://doi.org/10.1029/2020JC017018, 2021.
Yang, Q., Tian, J., Zhao, W., Liang, X., and Zhou, L.: Observations of
turbulence on the shelf and slope of northern South China Sea, Deep-Sea
Res. Pt. I, 87, 43–52, https://doi.org/10.1016/j.dsr.2014.02.006, 2014.
Zhang, S. and Alford, M. H.: Instabilities in nonlinear internal waves on
the Washington continental shelf, J. Geophys. Res.-Oceans,
120, 5272–5283, https://doi.org/10.1002/2014jc010638, 2015.
Zhao, Z.: Satellite observation of internal solitary waves converting
polarity, Geophys. Res. Lett., 30, 1988, https://doi.org/10.1029/2003gl018286, 2003.
Short summary
When the internal solitary wave propagates to the continental shelf and slope, the polarity reverses due to the shallower water depth. In this process, the internal solitary wave dissipates energy and enhances diapycnal mixing, thus affecting the local oceanic environment. In this study, we used reflection seismic data to evaluate the spatial distribution of the diapycnal mixing around the polarity-reversing internal solitary waves.
When the internal solitary wave propagates to the continental shelf and slope, the polarity...
Special issue