Articles | Volume 27, issue 3
https://doi.org/10.5194/npg-27-411-2020
https://doi.org/10.5194/npg-27-411-2020
Research article
 | 
31 Aug 2020
Research article |  | 31 Aug 2020

Beyond univariate calibration: verifying spatial structure in ensembles of forecast fields

Josh Jacobson, William Kleiber, Michael Scheuerer, and Joseph Bellier

Related authors

Multi-decadal Streamflow Projections for Catchments in Brazil based on CMIP6 Multi-model Simulations and Neural Network Embeddings for Linear Regression Models
Michael Scheuerer, Emilie Byermoen, Julia Ribeiro de Oliveira, Thea Roksvåg, and Dagrun Vikhamar Schuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1603,https://doi.org/10.5194/egusphere-2025-1603, 2025
Short summary
How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023,https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022,https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary
Multivariate localization functions for strongly coupled data assimilation in the bivariate Lorenz 96 system
Zofia Stanley, Ian Grooms, and William Kleiber
Nonlin. Processes Geophys., 28, 565–583, https://doi.org/10.5194/npg-28-565-2021,https://doi.org/10.5194/npg-28-565-2021, 2021
Short summary

Cited articles

Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, https://doi.org/10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2, 1996. a, b
Apanasovich, T. V., Genton, M. G., and Sun, Y.: A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components, J. Am. Stat. Assoc., 107, 180–193, https://doi.org/10.1080/01621459.2011.643197, 2012. a
Bellier, J., Scheuerer, M., and Hamill, T. M.: Precipitation downscaling with Gibbs sampling: An improved method for producing realistic, weather-dependent and anisotropic fields, J. Hydrometeorol., https://doi.org/10.1175/JHM-D-20-0069.1, online first, 2020. a
Buizza, R., Bidlot, J.-R., Wedi, N., Fuentes, M., Hamrud, M., Holt, G., and Vitart, F.: The new ECMWF VAREPS (variable resolution ensemble prediction system), Q. J. Roy. Meteor. Soc., 133, 681–695, https://doi.org/10.1002/qj.75, 2007. a
Buschow, S. and Friederichs, P.: Using wavelets to verify the scale structure of precipitation forecasts, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, https://doi.org/10.5194/ascmo-6-13-2020, 2020. a
Download
Short summary
Most verification metrics for ensemble forecasts assess the representation of uncertainty at a particular location and time. We study a new diagnostic tool based on fractions of threshold exceedance (FTE) which evaluates an additional important attribute: the ability of ensemble forecast fields to reproduce the spatial structure of observed fields. The utility of this diagnostic tool is demonstrated through simulations and an application to ensemble precipitation forecasts.
Share