Articles | Volume 27, issue 3
https://doi.org/10.5194/npg-27-411-2020
https://doi.org/10.5194/npg-27-411-2020
Research article
 | 
31 Aug 2020
Research article |  | 31 Aug 2020

Beyond univariate calibration: verifying spatial structure in ensembles of forecast fields

Josh Jacobson, William Kleiber, Michael Scheuerer, and Joseph Bellier

Related authors

How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023,https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022,https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary
Multivariate localization functions for strongly coupled data assimilation in the bivariate Lorenz 96 system
Zofia Stanley, Ian Grooms, and William Kleiber
Nonlin. Processes Geophys., 28, 565–583, https://doi.org/10.5194/npg-28-565-2021,https://doi.org/10.5194/npg-28-565-2021, 2021
Short summary
A statistical approach to fast nowcasting of lightning potential fields
Joshua North, Zofia Stanley, William Kleiber, Wiebke Deierling, Eric Gilleland, and Matthias Steiner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 79–90, https://doi.org/10.5194/ascmo-6-79-2020,https://doi.org/10.5194/ascmo-6-79-2020, 2020
Short summary
Statistical post-processing of ensemble forecasts of the height of new snow
Jari-Pekka Nousu, Matthieu Lafaysse, Matthieu Vernay, Joseph Bellier, Guillaume Evin, and Bruno Joly
Nonlin. Processes Geophys., 26, 339–357, https://doi.org/10.5194/npg-26-339-2019,https://doi.org/10.5194/npg-26-339-2019, 2019
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Physically constrained covariance inflation from location uncertainty
Yicun Zhen, Valentin Resseguier, and Bertrand Chapron
Nonlin. Processes Geophys., 30, 237–251, https://doi.org/10.5194/npg-30-237-2023,https://doi.org/10.5194/npg-30-237-2023, 2023
Short summary
Superstatistical analysis of sea surface currents in the Gulf of Trieste, measured by HF Radar, and its relation to wind regimes, using the maximum entropy principle
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2023-9,https://doi.org/10.5194/npg-2023-9, 2023
Revised manuscript accepted for NPG
Short summary
Rain process models and convergence to point processes
Scott Hottovy and Samuel N. Stechmann
Nonlin. Processes Geophys., 30, 85–100, https://doi.org/10.5194/npg-30-85-2023,https://doi.org/10.5194/npg-30-85-2023, 2023
Short summary
A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship
Justin Schulte, Frederick Policelli, and Benjamin Zaitchik
Nonlin. Processes Geophys., 29, 1–15, https://doi.org/10.5194/npg-29-1-2022,https://doi.org/10.5194/npg-29-1-2022, 2022
Short summary
Empirical evidence of a fluctuation theorem for the wind mechanical power input into the ocean
Achim Wirth and Bertrand Chapron
Nonlin. Processes Geophys., 28, 371–378, https://doi.org/10.5194/npg-28-371-2021,https://doi.org/10.5194/npg-28-371-2021, 2021
Short summary

Cited articles

Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, https://doi.org/10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2, 1996. a, b
Apanasovich, T. V., Genton, M. G., and Sun, Y.: A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components, J. Am. Stat. Assoc., 107, 180–193, https://doi.org/10.1080/01621459.2011.643197, 2012. a
Bellier, J., Scheuerer, M., and Hamill, T. M.: Precipitation downscaling with Gibbs sampling: An improved method for producing realistic, weather-dependent and anisotropic fields, J. Hydrometeorol., https://doi.org/10.1175/JHM-D-20-0069.1, online first, 2020. a
Buizza, R., Bidlot, J.-R., Wedi, N., Fuentes, M., Hamrud, M., Holt, G., and Vitart, F.: The new ECMWF VAREPS (variable resolution ensemble prediction system), Q. J. Roy. Meteor. Soc., 133, 681–695, https://doi.org/10.1002/qj.75, 2007. a
Buschow, S. and Friederichs, P.: Using wavelets to verify the scale structure of precipitation forecasts, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, https://doi.org/10.5194/ascmo-6-13-2020, 2020. a
Download
Short summary
Most verification metrics for ensemble forecasts assess the representation of uncertainty at a particular location and time. We study a new diagnostic tool based on fractions of threshold exceedance (FTE) which evaluates an additional important attribute: the ability of ensemble forecast fields to reproduce the spatial structure of observed fields. The utility of this diagnostic tool is demonstrated through simulations and an application to ensemble precipitation forecasts.