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Abstract. Most available verification metrics for ensemble
forecasts focus on univariate quantities. That is, they assess
whether the ensemble provides an adequate representation
of the forecast uncertainty about the quantity of interest at
a particular location and time. For spatially indexed ensem-
ble forecasts, however, it is also important that forecast fields
reproduce the spatial structure of the observed field and rep-
resent the uncertainty about spatial properties such as the size
of the area for which heavy precipitation, high winds, critical
fire weather conditions, etc., are expected. In this article we
study the properties of the fraction of threshold exceedance
(FTE) histogram, a new diagnostic tool designed for spatially
indexed ensemble forecast fields. Defined as the fraction of
grid points where a prescribed threshold is exceeded, the FTE
is calculated for the verification field and separately for each
ensemble member. It yields a projection of a – possibly high-
dimensional – multivariate quantity onto a univariate quan-
tity that can be studied with standard tools like verification
rank histograms. This projection is appealing since it reflects
a spatial property that is intuitive and directly relevant in ap-
plications, though it is not obvious whether the FTE is suf-
ficiently sensitive to misrepresentation of spatial structure in
the ensemble. In a comprehensive simulation study we find
that departures from uniformity of the FTE histograms can
indeed be related to forecast ensembles with biased spatial
variability and that these histograms detect shortcomings in
the spatial structure of ensemble forecast fields that are not
obvious by eye. For demonstration, FTE histograms are ap-
plied in the context of spatially downscaled ensemble precip-
itation forecast fields from NOAA’s Global Ensemble Fore-
cast System.

1 Introduction

Ensemble prediction systems like the ECMWF ensemble
(Buizza et al., 2007) or NOAA’s Global Ensemble Forecast
System (GEFS; Zhou et al., 2017) are now state of the art
in operational meteorological forecasting at weather predic-
tion centers worldwide. One of the goals of ensemble fore-
casting is the representation of uncertainty about the state
of the atmosphere at a future time (Toth and Kalnay, 1993;
Leutbecher and Palmer, 2008), and verification metrics are
required that can assess to what extent this goal is achieved.
For univariate quantities, i.e., if forecasts are studied sepa-
rately for each location and each forecast lead time, diagnos-
tic tools like verification rank histograms (Anderson, 1996;
Hamill, 2001), or reliability diagrams (Murphy and Winkler,
1977) can be used to check whether ensemble forecasts are
calibrated, i.e., statistically consistent with the values that
materialize.

When entire forecast fields are considered, aspects beyond
univariate calibration are important. For example, ensem-
bles that yield reliable probabilistic forecasts at each location
may still over- or under-forecast regional minima/maxima if
their members exhibit an inaccurate spatial structure (e.g.,
Feldmann et al., 2015, their Fig. 6). For weather variables
like precipitation, which are used as inputs to hydrological
forecast models, it is crucial that accumulations over space
and time (and the associated uncertainty) are predicted accu-
rately, and this again requires an adequate representation of
spatial structure and temporal persistence of precipitation by
the ensemble.

There is an added difficulty for forecasters in that misrep-
resentation of the spatial structure of weather variables by
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Figure 1. Simulated verification field and three associated forecast fields (arbitrary color scale) in which the spatial correlation length is
either the same as for the verification, 10 % miscalibrated, or 50 % miscalibrated. Can you tell which is correct?

ensemble forecast fields may not be discernible by eye. For
example, consider the simulated fields in Fig. 1: perhaps one
of these forecast fields has a clearly different spatial correla-
tion length than the verification, but we suspect that even the
sharp-eyed reader cannot distinguish between the remaining
fields with confidence. Even if the differences are obvious,
a quantitative verification metric is required to objectively
compare different forecast systems or methodologies.

Several multivariate generalizations of verification rank
histograms, such as minimum spanning tree histograms
(Smith and Hansen, 2004; Wilks, 2004), multivariate rank
histograms (Gneiting et al., 2008), average-rank and band-
depth rank histograms (Thorarinsdottir et al., 2016), and
copula probability integral transform histograms (Ziegel and
Gneiting, 2014), have been proposed and allow one to as-
sess different aspects of multivariate calibration. They are
all based on different projections of the multivariate quan-
tity of interest onto a univariate quantity that can then be
studied using standard verification rank histograms. Unfor-
tunately, most of these projections do not allow an intu-
itive understanding of exactly what multivariate aspect is
being assessed, and none are tailored to the special case
where the multivariate quantity of interest is a spatial field.
Two recent papers (Buschow et al., 2019; Buschow and
Friederichs, 2020) propose a wavelet-based verification ap-
proach in which wavelet transformations of forecast and ob-
served fields are performed to characterize and compare the
fields’ texture. The authors demonstrate that this approach
is able to detect differences in the spatial correlation length
similar to those shown in Fig. 1. Kapp et al. (2018) define a
skill score based on wavelet spectra and study the score dif-
ferences between a randomly selected ensemble member and
the verification field in order to detect possible deficiencies
in the texture of the forecast fields. Our goal is similar, but
the approach studied here follows the idea of defining a pro-
jection from the multivariate quantity (here: a spatial field)
onto a univariate quantity that can be analyzed via verifica-
tion rank histograms. Our main focus is on the probabilistic
nature of the forecasts; that is, we want to test whether the

ensemble adequately represents the uncertainty about spatial
quantities.

The projection underlying the verification metric stud-
ied here is based on threshold exceedances of the fore-
cast and observation fields. This binarization of continuous
weather variables is common in spatial forecast verification
(see Gilleland et al., 2009) as it allows one to study, for
example, low, intermediate, and high precipitation amounts
separately. In the context of deterministic forecast verifica-
tion, Roberts and Lean (2008) define the fractions skill score
(FSS) based on the fraction of threshold exceedances (FTEs)
within a certain neighborhood of every grid point and use
it to examine at which spatial scale the forecast FTEs be-
come skillful. Scheuerer and Hamill (2018) use a similar
concept to study whether an ensemble of forecast fields ad-
equately represents spatial forecast uncertainty. They calcu-
late the FTE for all ensemble members and the verifying ob-
servation field and study verification rank histograms of the
resulting univariate quantity in order to diagnose the advan-
tages and limitations of different statistical methods to gen-
erate high-resolution ensemble precipitation forecast fields
based on lower-resolution NWP model output. The FTE is an
interpretable quantity that is highly relevant in applications
where the fraction of the forecast domain for which severe
weather conditions are expected (e.g., heavy rain, extreme
wind speeds) may be of interest. However, it is not obvious
whether FTE histograms are sufficiently sensitive to misrep-
resentation of the spatial structure by the ensemble, and the
goal of the present paper is to investigate this discrimination
ability in detail.

In Sect. 2, we describe the calculation of the FTE and
the construction of the FTE histogram in detail. In Sect. 3,
a simulation study is designed and implemented that al-
lows us to analyze the discrimination capability of the FTE
histograms with regard to spatial structures. In Sect. 4, we
demonstrate the utility of FTE histograms in the context of
spatially downscaled ensemble precipitation forecast fields
from NOAA’s Global Ensemble Forecast System. A discus-
sion and concluding remarks are given in Sect. 5.
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2 The fraction of threshold exceedance metric

Let Z(s) be a scalar field on a domain s ∈D. Here, we de-
scribe a strategy of studying exceedances of Z at various
thresholds. That is, we focus interest in statistics based on
1{Z(s)>τ } for a given threshold τ ∈ R. In the domain D, we
define the FTE as the fraction of all points at which τ is ex-
ceeded. Specifically, let

FTE(Z,τ)=
1
|D|

∫
D

1{Z(s)>τ }(s)ds

=
1
n

n∑
j=1

1{Z(s)>τ }(sj ), (1)

where the first equality represents the idealized continuous
spatial process definition, while the second reflects the dis-
crete nature of spatial sampling in an operational probabilis-
tic forecasting context with D = {s1, . . ., sn}. The resulting
univariate quantity can be evaluated by common univariate
verification metrics (Scheuerer and Hamill, 2018).

Suppose we have a k-member ensemble Z1(s), . . .,Zk(s)

and associated verification field Z0(s) (e.g., observation or
analysis) all on D; let π = {FTE(Z0,τ ), . . .,FTE(Zk,τ )}.
Note that π depends on the threshold, but for ease of exposi-
tion we do not include this dependence in notation. We call r
the rank of the verification FTE relative to the set of verifica-
tion and ensemble forecast FTEs or the rank of FTE(Z0,τ )

in π . There are three cases of interest when computing r:
(1) no ties exist in π , (2) ties exist among a subset of π that
includes FTE(Z0,τ ), or (3) there is only one unique value
in π . In the first case no special action is required, and in
the second case ties in rank are simply broken uniformly at
random. The third case arises when all ensemble members
have the exact same FTE as the verification, as may occur,
for example, when the precipitation amount reported by the
verification and predicted by all ensemble members is below
the threshold τ everywhere in D. Instances of this case are
completely uninformative for the purpose of diagnosing mis-
calibration and can be discarded.

Gathering ranks over N instances of forecast–verification
pairs, r1, . . ., rN , a natural way to communicate the FTE rank
behavior is through a histogram (termed FTE histogram by
Scheuerer and Hamill, 2018) over the k+ 1 possible ranks.
Its construction is akin to that of the univariate verification
rank histogram discussed in Anderson (1996) and Hamill
(2001), but the latter only evaluates the marginal distribu-
tion of the ensemble. The FTE histogram behaves similarly
to the univariate verification rank histogram under marginal
miscalibration in that overpopulated low (high) bins are an
indication of an over-forecast (under-forecast) bias, and a ∪-
shaped (∩-shaped) histogram is an indication of an under-
dispersed (over-dispersed) ensemble. However, it is also sen-
sitive to misrepresentation of spatial correlations by the en-
semble forecast fields. To see this, consider first the extreme

case where the forecast fields are spatially uncorrelated (i.e.,
spatial white noise) while the verification fields have max-
imal spatial correlations. In this setup, if τ is equal to the
climatological median of the marginal distributions at each
grid point, the FTE for each ensemble member is close to
0.5, while the FTE for the verification field is either 0 or 1,
with equal probability. The associated FTE histogram is ∪-
shaped, with half of the cases in the lowest bin and the other
half in the highest bin. If τ is equal to the 95th climatolog-
ical percentile, the FTE of each ensemble member is close
to 0.05 and the FTE of the verification field is 0 with proba-
bility 0.95 and 1 with probability 0.05. The associated FTE
histogram is ∪-shaped and skewed, with 95 % of all cases in
the lowest bin and 5 % of all cases in the highest bin. For τ
equal to the 5th climatological percentile, the skewness is in
the other direction, with 5 % (95 %) of all cases in the low-
est (highest) bin. In a more realistic situation, where both
forecast end verification fields are spatially correlated but the
spatial correlations of the forecast fields are too weak (i.e.,
they exhibit too much spatial variability), we can still ex-
pect to see a somewhat ∪-shaped FTE histogram since the
verification FTE values are more likely to assume extreme
ranks than the ensemble FTE values. For large values of τ ,
the lower bins will be more populated; for small values of
τ , the higher bins will be more populated. Conversely, if the
spatial correlations of the forecast fields are too strong, the
verification ranks will over-populate the central bins, slightly
shifted upward or downward from the center depending on
τ . An ensemble that is marginally and spatially calibrated
(i.e., the strength of spatial correlations within each forecast
field matches that of the verification) will result in a flat FTE
histogram.

If the marginal forecast distributions are miscalibrated, the
resulting effects on the rank of the verification FTE are super-
imposed on those caused by misrepresentation of spatial cor-
relations. This complicates interpretation because it is often
impossible to disentangle the different sources of miscalibra-
tion (this loss of information is an inevitable consequence of
projecting a multivariate quantity onto a univariate one), and
it can even happen that different effects cancel each other out.
For example, ensemble forecast fields which are both under-
dispersive and have too strong spatial correlations may result
in flat FTE histograms. This serves as a reminder that – as
in the univariate case – a flat histogram is a necessary but
not sufficient condition for probabilistic calibration. It simply
indicates that the verification and the ensemble are indistin-
guishable with regard to the particular aspect of the forecast
fields (here: exceedance of a prespecified threshold) assessed
by this metric. Systematic over- or under-forecast biases can
be accounted for by using different (depending on the respec-
tive climatology) threshold values τ for the forecast and veri-
fication fields. We are not aware of an equally straightforward
way to account for dispersion errors, so we encourage users
to always check the marginal forecast distributions first and
then study FTE histograms for different thresholds, possibly
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in conjunction with other multivariate verification metrics in
order to obtain a comprehensive picture of the multivariate
properties of the ensemble forecasts.

While the FTE histogram is a useful visual diagnostic tool,
a quantitative measure for studying departures from unifor-
mity is desirable. Akin to Keller and Hense (2011), we fit a
beta distribution to the histogram values (transformed to the
unit interval) and characterize the histogram shape based on
the β-score and β-bias, respectively, defined as

βS = 1−

√
1
a · b

, βB = b− a, (2)

where a and b are the two distribution parameters. Since his-
togram values only occur at discrete points in [0,1], param-
eter estimation methods will incur some bias due to the lack
of data on the interior of adjacent ranks. Thus, we stochasti-
cally disaggregate the (transformed) ranks r1, . . ., rN to con-
tinuous values in [0,1] (see Appendix A for details) and fit
a beta distribution via maximum likelihood. Together, the β-
score and β-bias provide a pair of succinct descriptive statis-
tics which communicate the visual characteristics of the his-
togram and therefore the ensemble’s calibration properties.
In the ideal case, βS and βB are both exactly zero, indicat-
ing that the FTE histogram is perfectly uniform. In practice,
these metrics are never exactly zero. The resulting set of pos-
sible deviations and broad interpretations of the correspond-
ing histogram shapes is outlined in Table 1. With the β-score
and β-bias, we have an easily interpreted measure of spatial
forecast calibration.

In summary, the FTE metric is composed of three steps:
(1) calculate the FTE of each verification and ensemble fore-
cast field, (2) construct an FTE histogram over available
instances of forecast and verification times, and (3) derive
the β-score and β-bias from the stochastically disaggregated
FTE histogram to characterize departure from uniformity.

3 Simulation study

In this section we consider an extensive simulation study
to assess the ability of the proposed FTE histogram to di-
agnose deficiencies in the representation of spatial variabil-
ity by the ensemble forecast fields. Our simulations will be
based on multivariate Gaussian processes where the notion
of “spatial variability” can be quantified in terms of a cor-
relation length parameter. The various meteorological quan-
tities of interest such as precipitation and wind speeds can
be quite heterogeneous and spatially nonstationary over the
study domain. However, since we study the spatial structure
of threshold exceedances, a suitable choice of thresholds can
mitigate these effects to a degree that multivariate, station-
ary Gaussian processes can be viewed as a sufficiently flex-
ible model for simulating realistic spatial fields. To see this,
consider a strictly positive and continuous variable Z(s) at
two spatial locations s = s1, s2 with possibly unequal con-

tinuous cumulative distribution functions F1 and F2, respec-
tively. Rather than considering a spatially constant thresh-
old such as 10 ms−1 for wind gusts, we can use a location-
dependent threshold, say the 90% climatological quantiles
q(s1) and q(s2) representing local characteristics. Then both
quantities 1{Z(si )>q(si )}, i = 1,2 are identically distributed
Bernoulli(0.1) random variables. Exploiting a standard Gaus-
sian probability integral transformation method, we note that
8−1(F (Z(si))) is a standard normal random variable, where
8 is the cumulative distribution function of a standard nor-
mal. Thus, the original probability of threshold exceedance
can be written as

P(Z(si) > q(si))= P(F(Z(si)) > F(q(si)))

= P(8−1(F (Z(si))) > 8
−1(F (q(si))))

= P(X >8−1(0.9)), (3)

where X is a standard normal. Thus, we have shown that a
field of random variables with continuous, possibly distinct
local probability distributions can be transformed to stan-
dard Gaussian marginal distributions, and using local quan-
tiles as the threshold is then equivalent to a spatially constant
threshold on the transformed variables. For weather variables
with discrete–continuous marginal distributions (e.g., precip-
itation), this direction of the transformation is not quite as
straightforward. Conversely, however, simulated fields from
Gaussian processes can always be transformed to any desired
marginal distributions (including discrete–continuous ones).
In our ensuing simulation studies we therefore consider sta-
tionary spatial Gaussian processes to represent forecast and
verification fields.

The main technical difficulty in setting up the simulation
study is in generating multiple, stationary Gaussian random
fields that have different correlation lengths while being cor-
related with each other. That is, we would like to generate
Z0(s) and Z1(s) in such a way that Cov(Z0(s),Z1(s)) > 0
(representing that the forecast field is correlated with the ver-
ification field) and where Z0 and Z1 have possibly distinct
correlation lengths (representing that the forecast field is spa-
tially miscalibrated). A natural approach is to use multivari-
ate random field models.

3.1 Multivariate Gaussian processes

We call a vector of processes (Z0(s),Z1(s), . . .,Zk(s)) a
multivariate Gaussian process if its finite-dimensional distri-
butions are multivariate normal. We focus on second-order
stationary mean zero multivariate Gaussian processes in that
E(Zi(s))= 0 for all i = 0, . . .,k and s ∈D. Stationarity im-
plies that the stochastic process is characterized by

Cij (h)= Cov(Zi(s+h),Zj (s)),
for all h such that s+h ∈D, (4)

which are called covariance functions for i = j and cross-
covariance functions for i 6= j . Not all choices of functions
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Table 1. Characterization of FTE histogram shapes via β-score and β-bias and their interpretation with regard to potential deficiencies of the
ensemble forecast fields.

Histogram Parameters Score and bias Interpretation

Uniform a = b = 1 βS = βB = 0 Ensemble FTEs consistent with verification FTE
∪-shaped a,b < 1 βS < 0 Under-dispersed marginal distributions OR excessive spatial variability
∩-shaped a,b > 1 βS > 0 Over-dispersed marginal distributions OR insufficient spatial variability
Right-skewed a < b βB > 0 Over-forecast bias OR excessive spatial variability at high thresholds
Left-skewed a > b βB < 0 Under-forecast bias OR insufficient spatial variability at high thresholds

Skewness is exaggerated by high thresholds; see text for more detail.

Cij will result in a valid model; in particular, we require that
the matrix of functions C(h)= (Cij (h))ki,j=0 be a nonnega-
tive definite matrix function, the technical definition of which
can be found in Genton and Kleiber (2015).

There are many models for multivariate processes (Gen-
ton and Kleiber, 2015), and here we exploit a particular
class called the multivariate Matérn (Gneiting et al., 2010;
Apanasovich et al., 2012). We rely on the popular Matérn
correlation function

M(d|ν,a)=
21−ν

0(ν)

(
d

a

)ν
Kν

(
d

a

)
, (5)

where 0 is the gamma function, Kν is the modified Bessel
function of the second kind of order ν, and d is a nonnegative
scalar. Parameters have interpretations as a smoothness (ν)
and spatial range or correlation length (a). The multivariate
Matérn correlation function is defined as

Cii(h)= σ
2
i M(‖h‖|νi,ai), for i = 0, . . .,k (6)

and

Cij (h)= Cji(h)= ρijσiσjM(‖h‖|νij ,aij ),

for 0≤ i 6= j ≤ k, (7)

where ‖ · ‖ is the Euclidean norm. In this latter equation,
ρij ∈ [−1,1] is the co-located cross-correlation coefficient.
Interpretation of the cross-covariance parameters requires
spectral techniques (Kleiber, 2017).

3.2 Simulation setup

Simultaneously simulating the verification fieldZ0(s) and all
forecast fields Z1(s), . . .,Zk(s) is difficult due to the high-
dimensional joint covariance matrix. Instead, we approach
simulations by jointly simulating the verification fields Z0(s)

and the (scaled) ensemble mean field ZM(s) from a bivari-
ate Matérn model. We then perturb the mean field with in-
dependent univariate Gaussian random fields to generate an
11-member ensemble, k = 11.

The simulation setup follows a series of steps.

1. Generate Z0 and ZM, the verification and (scaled) en-
semble mean as a mean zero bivariate Gaussian ran-
dom field with multivariate Matérn correlation length

parameters a0, aM, and a0M =
√
a0aM, smoothness pa-

rameters ν0 = ν0M = νM = 1.5, and co-located correla-
tion coefficient ρ0M = ω = 0.8.

2. Generate 11 independent mean zero Gaussian random
fieldsW1(s), . . .,W11(s)with Matérn covariance having
correlation length a = aM and smoothness ν = νM =

1.5.

3. The ensemble member fields Z1(s), . . .,Z11(s) are con-
structed as

Zi(s)= ωZM(s)+
√

1−ω2Wi(s), i = 1, . . .,11. (8)

The third step implies that each field in the ensemble is a
Gaussian process with mean zero, variance one, correlation
length aM, smoothness νM, and univariate “forecast skill”
controlled by the parameter ω (see Appendix B). Note that
by choosing the co-located correlation coefficient ρ0M = ω,
the correlation between the verification and each ensem-
ble member is ω2, the same as the correlation between en-
semble members themselves. That is, Cov[Zi,Zj ] = ω2 for
i,j = 0. . .,11 when i 6= j (derivation in Appendix C), and
thus the ensemble forecasts are calibrated in the univariate
sense.

In this study, fields were constructed on a square grid
over the domain [−20,20]× [−20,20] with resolution 0.2.
Verification-ensemble samples were collected by repeating
the simulation above 5000 times for each combination of

a0 ∈ {1,1.5, . . .,3.5,4},
aM ∈ {0.5a0,0.6a0, . . .,1.4a0,1.5a0},

resulting in a total of 77 experiments. Note that in practice,
each sample corresponds to a date for which forecasts have
been issued and verifying observations are available, mean-
ing the sample size is governed by the time period for which
the verification is performed. For each experiment, FTE his-
tograms were constructed from the 5000 samples using each
of τ ∈ {0,0.5, . . .,3.5,4}. That is, for a given a0 and aM we
analyzed nine FTE histograms, for a total of 693 histograms
across all experiments.
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3.3 Simulation analysis

The question of primary interest in this analysis is whether
the FTE histogram accurately identifies miscalibration of en-
semble correlation lengths.

3.3.1 Illustrative examples of FTE histograms

First, we study the discrimination ability of the FTE his-
togram in something of an exaggerated setting, where the
miscalibration is obvious. We choose the median of the
marginal distribution as the threshold (i.e., τ = 0) and a ver-
ification correlation length of 2. On this grid, binary fields
produced in this way appear qualitatively similar to the bi-
nary precipitation fields analyzed later in this paper (see
Fig. 7). The correlation length ratio is the ratio of the en-
semble correlation length to that of the verification field. We
study ensembles with too small of a correlation length us-
ing ratio 0.5 (Fig. 2, row A), a correct correlation length us-
ing ratio 1.0 (Fig. 2, row B), and too large of a correlation
length using ratio 1.5 (Fig. 2, row C). Corresponding FTE
histograms are then constructed with respect to these three
ratios using 5000 verification-ensemble samples in each case.
This revealing example is depicted in Fig. 2 and behaves as
described in Table 1, where the FTE histogram takes a ∪
shape (∩ shape) when the ensemble correlation length is too
small (large), indicating excessive (insufficient) spatial vari-
ability. As desired, the FTE histogram is approximately flat
when the ensemble fields have the same correlation length as
the verification field.

While the FTE histogram is able to correctly identify the
obvious miscalibration of the ensemble for the scenario in
Fig. 2, one could likely draw the same conclusions by visual
inspection and would not use the FTE histogram for these
fields in practice. However, ensemble forecast models are not
generally so grossly miscalibrated; though a true correlation
length ratio does not exist in reality, the theoretical ratio will
often be much closer to unity. Therefore, the true utility of
the FTE histogram is realized when the miscalibration is not
so visually obvious. This more realistic example is illustrated
in Fig. 3, where the above experiment is repeated using dif-
ferent correlation length ratios. In row A, the ensembles have
ratio 0.9 and the resulting FTE histogram is still noticeably
∪-shaped. The ratio in row B is 1.0, which yields a flat FTE
histogram. In row C, the ratio is 1.1 and the FTE histogram is
noticeably ∩-shaped. Again, these results are consistent with
Table 1, and we conclude that the FTE histogram maintains
accurate discrimination ability even when ensemble mem-
bers are only slightly miscalibrated.

Of course, one may often want to use a threshold param-
eter other than the median of the marginal distributions. The
choice of τ is somewhat application specific; for example, it
can be chosen such as to focus on high precipitation amounts.
Thus, it is important that the FTE histogram maintains dis-
crimination ability for different choices of τ . For a visual

example, the same experiment depicted in Fig. 3 is repeated
in Fig. 4 but with FTE histograms constructed using τ = 2
(equivalent to 2 SDs from the mean in this case). When the
ensemble fields have a correlation length that is slightly too
small (row A), the resulting FTE histogram is ∪-shaped and
has a slight right skew due to the higher threshold but cor-
rectly indicates excessive spatial variability. When the en-
semble exhibits insufficient spatial variability, i.e., correla-
tion length is slightly too large (row C), the FTE histogram is
∩-shaped and somewhat left-skewed. Reassuringly, the FTE
histogram remains flat when the ensemble fields share the
same correlation length as the verification fields (row B).
While these results are in agreement with Table 1, the ef-
fect of the threshold can be studied more generally using the
estimated β-score and β-bias.

3.3.2 Quantifying deviation from uniformity

Recall that we propose quantifying the shape of the FTE
histogram with the β-score and β-bias. When βS = βB = 0,
the FTE histogram is perfectly uniform. How do these met-
rics change as the threshold τ increases? Figure 5 demon-
strates how the β-score and β-bias vary over increasing
thresholds for different correlation length ratios; the esti-
mated β-distribution parameters are also depicted for com-
parison with Table 1. Where provided, confidence inter-
vals were estimated via the nonparametric bootstrap method
(see Delignette-Muller and Dutang, 2015; Cullen and Frey,
1999). When the correlation length ratio is 1.0, both the β-
score and β-bias are approximately zero for every choice of
τ , correctly indicating a spatially calibrated ensemble. When
the correlation length ratio is less (greater) than 1.0, the β-
scores are themselves generally less (greater) than zero, in-
dicating excessive (insufficient) spatial variability. As pre-
viously discussed, the β-bias becomes more pronounced at
higher thresholds, thus highlighting the inextricable link be-
tween threshold and skewness. Above a very high threshold
of about 3 SDs (i.e., τ ≈ 3), both metrics exhibit a tendency
toward zero. This is partially due to the fact that the num-
ber of exceedances for high thresholds will often be zero,
and since ranks are only discarded from the histogram if all
ensemble members and the verification field have the same
FTE, the FTE histogram for very high thresholds will be
composed largely of ranks resulting from ties broken uni-
formly at random. This results in a more deceptively uniform
histogram which explains the tendency toward zero. For the
most extreme thresholds studied here, the confounding effect
of resolving ties (which can exist between all but a single
ensemble member FTE) at random becomes very dominant,
and histogram shapes get distorted to a degree where the in-
terpretations provided in Table 1 no longer hold. The asso-
ciated FTE histograms still exhibit non-uniformity and thus
indicate that the ensemble forecasts are not perfectly cali-
brated, but it becomes impossible to diagnose the particu-
lar type of miscalibration from the histogram shape. We can
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Figure 2. Example binary exceedance verification field and a subset of ensemble fields with representative FTE histogram for threshold
τ = 0 found using 5000 samples. Dark blue regions indicate threshold exceedance. All verification fields have correlation length a0 = 2 and
ensemble fields have correlation length aM = 1,2,3 in rows A, B, and C, respectively. FTE histograms are density histograms with dotted
line y = 1 and corresponding β-score (left) and β-bias (right) annotated.

Figure 3. As Fig. 2 but ensemble fields have correlation length aM = 1.8,2,2.2 in rows A, B, and C, respectively.

also see that the sampling variability increases with increas-
ing threshold since more and more uninformative cases with
fully tied FTE values exist, so a much larger total number of
verification cases is required in order to have a comparable
number of informative cases. In practice, if FTE histograms
are used as a diagnostic tool, we recommend focusing on
moderate thresholds. If they are used to compare the calibra-
tion of different forecast systems, they can still be effective
at more extreme thresholds.

Another variable of interest in evaluating the FTE his-
tograms is the size of the domain to which the metric is
applied. In our simulation framework, making the domain
larger or smaller while keeping the correlation length con-
stant is equivalent to keeping the domain size constant and
varying the correlation length of the verification field. That
is, for a fixed domain size, a smaller correlation length mim-
ics a “large domain” (with low resolution) and a larger cor-
relation length mimics a “small domain” (with high reso-
lution). Analyzing the β-score and β-bias over a range of
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Figure 4. As Fig. 3 but with threshold τ = 2.

Figure 5. Estimated beta distribution parameters (top) and corresponding β-score and β-bias (bottom) of FTE histograms calculated over
different thresholds for forecasts with low, even, and high correlation length ratios about a0 = 2. Vertical lines denote the 95 % confidence
interval found via the nonparametric bootstrap method.

correlation length ratios is then equivalent to studying the
FTE histograms’ utility for different domain sizes. For the
domain used in this study, a correlation length of 1 is con-
sidered small and 3 is considered large (see Fig. 2). In either
case, Fig. 6 shows that the β-score quickly deviates from zero
when the correlation length ratio is different from 1. The β-
score’s relatively steep slope around the correlation length of
1.0 in both cases indicates that the FTE histogram maintains
good discrimination ability regardless of domain size, pro-
vided that there are sufficiently many grid points within the
domain to keep the (spatial) sampling variability associated
with the calculation of the FTE values low. Notably, the in-
verse relationship between β-bias and the correlation length
ratio is also in agreement with Table 1.

We now turn attention back to our motivating figure
(Fig. 1), which was created with verification correlation
length a0 = 2. Forecast 1 exhibited the correct spatial struc-
ture (i.e., aM = 2), forecast 2 was incorrectly specified with
correlation length aM = 3, and forecast 3 was incorrectly
specified with correlation length aM = 1.8. While it may be
obvious that forecast 2 has incorrect spatial structure, the
structural difference between forecasts 1 and 3 is not so
apparent. However, as demonstrated by the analysis above
(Figs. 2–5), these misspecifications are certainly identifiable
using FTE histograms.
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Figure 6. Estimated β-score and β-bias of FTE histograms constructed with τ = 1 for verification correlation length a0 ∈ {1,3} and ensemble
range aM varying from 0.5a0 to 1.5a0.

4 Application to downscaling of ensemble precipitation
forecasts

Distributed hydrological models like NOAA’s National Wa-
ter Model (NWM) require meteorological inputs at a rela-
tively high spatial resolution. At shorter forecast lead times
(typically up to 1 or 2 days ahead) limited-area NWP mod-
els provide such high-resolution forecasts, but for longer lead
times only forecasts from global ensemble forecast systems
like NOAA’s GEFS are available. These come at a relatively
coarse resolution and need to be downscaled (statistically
or dynamically) to the high-resolution output grid. Here, we
use a combination of the statistical post-processing algorithm
proposed by Scheuerer and Hamill (2015), ensemble cop-
ula coupling (ECC; Schefzik et al., 2013), and the spatial
downscaling method proposed by Gagnon et al. (2012) to
obtain calibrated, high-resolution precipitation forecast fields
based on GEFS ensemble forecasts. Does the spatial disag-
gregation method produce precipitation fields with appropri-
ate sub-grid-scale variability? This question will be answered
using the FTE-based verification metric discussed above.

4.1 Data and downscaling methodology

We consider 6 h precipitation accumulations over a region
in the southeastern US between −91 and −81◦ longitude
and 30 and 40◦ latitude during the period from January
2002 to December 2016. Ensemble precipitation forecasts
for lead time 66 to 72 h were obtained from NOAA’s second-
generation GEFS reforecast dataset (Hamill et al., 2013)
at a horizontal resolution of ∼ 0.5◦. Downscaling and ver-
ification is performed against precipitation analyses from
the ∼ 0.125◦ climatology-calibrated precipitation analysis
(CCPA) dataset (Hou et al., 2014).

In order to obtain calibrated ensemble precipitation fore-
casts at the CCPA grid resolution, we proceed in three steps.
First, we apply the post-processing algorithm by Scheuerer
and Hamill (2015) to the GEFS forecasts and upscaled

(to the GEFS grid resolution) precipitation analyses in or-
der to remove systematic biases and ensure adequate rep-
resentation of forecast uncertainty at this coarse grid scale.
The resulting predictive distributions are turned back into
an 11-member ensemble using the ECC-mQ-SNP variation
(Scheuerer and Hamill, 2018) of the ECC technique. This
variation removes discontinuities and avoids randomization
that can occur when the standard ECC approach is applied to
precipitation fields. Finally, each ensemble member is down-
scaled from the GEFS to the CCPA grid resolution using a
slightly simplified version of the Gibbs sampling disaggre-
gation model (GSDM) proposed by Gagnon et al. (2012). To
generate downscaled fields with spatial properties that vary
depending on the season, we rely here on a monthly cali-
bration of the GSDM, rather than on meteorological predic-
tors as in the original model. The 15 years of data are cross-
validated: 1 year at a time is left out for verification and the
post-processing and downscaling models are fitted with data
from the remaining 14 years. Repeating this process for all
years leaves us with 15 years of downscaled ensemble fore-
casts and verifying analyses. See Fig. 7 for a visual reference.

4.2 Univariate verification

Before applying the FTE histogram to investigate whether
the spatial disaggregation used in the downscaling method
produces precipitation fields with appropriate sub-grid-scale
variability, we check the calibration of the univariate ensem-
ble forecasts across all fine-scale grid points. We study (sep-
arately) the months January, April, July, and October in order
to represent winter, spring, summer, and fall, respectively.
Daily analyses and corresponding ensemble forecasts from
each of these months are pooled over the entire verification
period and all grid points within the study area and are used
to construct the verification rank histograms in Fig. 8. Cases
where all ensemble member forecasts and the analysis are
tied – for example, when there is zero accumulation at a grid
point for all fields – are withheld from the histogram to avoid
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Figure 7. Examples of different data fields for 6 h precipitation accumulation on 24 July 2004 (a–c) and corresponding 5 mm binary ex-
ceedance fields (d–f; dark blue regions indicate threshold exceedance). From left to right: coarse-scale GEFS ensemble member, the same
member downscaled to the analysis resolution, and the corresponding CCPA analysis.

artificial uniformity introduced by breaking ties in rank at
random.

Ideally, the statistical post-processing and downscaling
should yield calibrated ensemble forecasts and thus rank his-
tograms that are approximately uniform. Clearly, the rank
histograms for the downscaled forecast fields shown in Fig. 8
are not uniform; there is a consistent peak in the higher ranks
indicating that the downscaled ensemble forecasts tend to
underestimate precipitation accumulations, especially in fall
and winter. This bias could be an indication that either the
post-processing distribution (gamma) or the disaggregation
distribution (log-normal) is not perfectly suited for repre-
senting the respective forecast uncertainties. It may also be
a result of a superposition of biases in different sub-domains
or for different weather situations. Univariate calibration in
July – which happens to be a month with more frequent
precipitation in this region of the US – is relatively good,
and while the histograms of other months show clear de-
partures from uniformity, there is at least no strong ∪ or ∩
shape to indicate significant dispersion errors. We thus con-
tinue with our analysis of the spatial calibration of the down-
scaled ensemble forecast fields, keeping in mind though that
the under-forecast biases seen in Fig. 8 will carry over to
the FTE histograms and will superimpose any shape result-
ing from spatial miscalibration. In July, where only a mild
under-forecast bias is observed, we will have the best chance
of drawing unambiguous conclusions about the spatial struc-
ture from the shape of the FTE histogram.

4.3 Verification of spatial structure

In the remaining analysis, we employ FTE histograms to in-
vestigate the spatial properties of the ensemble forecast fields
obtained by the downscaling algorithm for the same repre-
sentative months outlined above. Spatial variability of pre-
cipitation fields depends on whether precipitation is strati-
form or convective, and in the latter case also on the type
of convection (local vs. synoptically forced). The frequency
of occurrence of these categories has a seasonal cycle, and
it is therefore interesting to study how well the downscal-
ing methodology works in different seasons. The first step
in computing the FTE is deciding what value to use for the
threshold. If the climatology varies strongly across the do-
main, it may be desirable to use a variable threshold such as
a climatology percentile. However, the southeastern US is a
flat and relatively homogeneous region, meaning the precip-
itation accumulation patterns will not be affected as much
by orography, and we therefore select a fixed threshold for
constructing FTE histograms. Another advantage of this ap-
proach is that a fixed threshold has a direct physical interpre-
tation; here we use thresholds of 5, 10, and 20 mm to study
the spatial calibration of the ensemble for low, medium, and
high accumulation levels over the 6 h window.

In Fig. 9, it is clear by visual inspection that the FTE his-
tograms are all ∪-shaped to some extent, though the corre-
sponding β-scores highlight that the histograms are explic-
itly more uniform in the fall and winter months. In the spring
and summer months (i.e., April and July) the histograms re-
veal a clear under-dispersion in the ensemble FTEs at all an-
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Figure 8. Verification rank histograms (density) for downscaled fields at representative months with cases of fully tied ranks removed.
Estimated β-score (left) and β-bias (right) annotated.

Figure 9. FTE histograms for downscaled fields at different thresholds in representative months. Estimated β-score (left) and β-bias (right)
annotated.

alyzed thresholds. This would suggest that the downscaled
ensemble overestimates fine-scale variability during the sea-
sons with more convective events. This could indicate that
the calibration procedure of the GSDM downscaling method
in Gagnon et al. (2012) struggles with selecting good pa-
rameters that produce downscaled precipitation fields with
just the right amount of spatial variability during the summer
season with mainly (but not exclusively) convective precip-
itation. The FTE histogram can thus provide valuable diag-
nostic information that helps identify shortcomings of a fore-
cast methodology. Indeed, in one of our current projects we
seek to improve the GSDM, with one objective being to cal-
ibrate the model such that the downscaled fields reproduce
the correct amount of spatial variability, in a flow-dependent
fashion, using meteorological predictors such as instability
indices and vertical wind shear (Bellier et al., 2020). For the
β-biases seen in Fig. 9, the interpretation is more difficult.

Their value at higher thresholds has the opposite sign to what
we would expect from Table 1 in a situation where the fore-
cast fields simulate excessive fine-scale variability. As noted
above, however, this is likely due to an under-forecast bias
in the marginal distributions and the associated effect on the
β-bias which is opposite to (and seems to be dominating) the
effects of spatial miscalibration.

5 Conclusions

When forecasting meteorological variables on a spatial do-
main, it is important for many applications that not only the
marginal forecast distributions, but also the spatial (and/or
temporal) correlation structure is represented adequately. In
some instances, misrepresentation of spatial structure by en-
semble forecast fields may be visually obvious; otherwise, a
quantitative verification metric is desired to objectively eval-
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uate the ensemble calibration. The FTE metric studied here is
a projection of a multivariate quantity (i.e., a spatial field) to a
univariate quantity and can be combined with the concept of
a (univariate) verification rank histogram to analyze the spa-
tial structure of ensemble forecast fields. This idea was first
applied by Scheuerer and Hamill (2018) to study the prop-
erties of downscaled ensemble precipitation forecasts, but an
understanding of the general capability of the FTE metric to
detect misrepresentation of the spatial structure by the en-
semble has been lacking as yet.

In this paper, we performed a systematic study in which
we simulated ensemble forecast and verification fields with
different correlation lengths to understand how well a mis-
specification of the correlation length can be detected by the
FTE metric. To this end, the metric was slightly extended and
is composed of three steps: (1) calculate the FTE of each ver-
ification and ensemble forecast field, (2) construct an FTE
histogram over available instances of forecast and verifica-
tion times, and (3) derive the β-score and β-bias from the
stochastically disaggregated FTE histogram to characterize
departure from uniformity. We have found that the FTE met-
ric is capable of detecting even minor issues with the correla-
tion length (e.g., 10 % miscalibration) in ensemble forecasts,
and this conclusion was consistent across a range of thresh-
olds and domain sizes. Applied in a data example with down-
scaled precipitation forecast fields, the FTE metric pointed to
some shortcomings of the underlying spatial disaggregation
algorithm during the seasons where precipitation is driven by
local convection.

The FTE metric is relatively simple and enjoys an easy
and intuitive interpretation. In particular, the β-score and β-
bias can be compared according to Table 1 to diagnose short-
comings in the calibration of ensemble forecasts. If different
types of miscalibration occur together, additional diagnostic
tools like univariate verification rank histograms have to be
considered alongside the FTE histograms to disentangle the
different effects. While we have focused on histograms in the
analysis of the verification FTE rank here, the same projec-
tion could also be used in combination with proper scoring
rules. We believe that FTE histograms are a useful addition to
the set of spatial verification metrics. They complement met-
rics like the wavelet-based verification approach proposed by
Buschow et al. (2019) which has additional capabilities when
it comes to analyzing aspects of the spatial texture of fore-
cast fields but is not primarily targeted at proper uncertainty
quantification by an ensemble.
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Appendix A: Stochastic disaggregation of transformed
ranks

The data vector of ranks r has discrete elements ri ∈

{1,2, . . .,k+ 1}, where k is the number of ensemble mem-
bers. In order to disaggregate these elements to a continuous
domain for use with maximum likelihood estimation, the fol-
lowing algorithm is applied to each element ri .

1. Let di = (ri − 1
2 )/(k+ 1).

2. Simulate a (continuous) uniform random variable: Ui ∼
Uniform

(
di −

1
2(k+1) ,di +

1
2(k+1)

)
.

3. Set ri = Ui .

The effect of Step 1 is a mapping into [0,1], while Step 2 is
the stochastic disaggregation to evenly spaced uniform inter-
vals whose supports form a partition of unity of [0,1].

Appendix B: Properties of simulated ensemble members

Let ZM(s) and Wi(s) be independent, mean-zero Gaus-
sian processes, each with Matérn covariance function
M(d|νM,aM). Now suppose ZM and Wi are indepen-
dent standard Gaussian random variables representing the
marginal distribution of processes ZM(s) and Wi(s). Setting
random variable

Zi = ωZM+
√

1−ω2Wi, ω ∈ [−1,1], (B1)

we see E[Zi] = 0 by linearity of the expectation operator and

Var[Zi] = Var[ωZM+
√

1−ω2Wi]

= ω2Var[ZM] + (1−ω2)Var[Wi]

= 1 (B2)

using independence of ZM and Wi . Then Zi is a standard
Gaussian random variable representing the marginal distribu-
tion of ensemble member Zi(s)= ωZM(s)+

√
1−ω2Wi(s).

Further, observe that

Cov[Zi(s+h),Zi(s)]

= Cov[ωZM(s+h)+
√

1−ω2Wi(s+h),ωZM(s)

+

√
1−ω2Wi(s)]

= ω2Cov[ZM(s+h),ZM(s)]

+ (1−ω2)Cov[Wi(s+h),Wi(s)]

= ω2M(||h|||νM,aM)+ (1−ω2)M(||h|||νM,aM)

=M(||h|||νM,aM) (B3)

by independence of ZM(s) and Wi(s). That is, ensemble
members Zi(s), i = 1, . . .,k preserve the covariance struc-
ture of the ensemble mean ZM(s).

Appendix C: Derivation of an appropriate co-located
correlation coefficient

Suppose Z0 and ZM are standard Gaussian random variables
with Corr[Z0,ZM] = ρ, and {Wi}

k
i=1 is a set of independent

standard Gaussian random variables, each independent of Z0
and ZM. Define

Zi =ωZM+
√

1−ω2Wi,

i = 1, . . .,k, ω ∈ [−1,1]. (C1)

From Appendix B we have that each Zi is again a standard
Gaussian random variable. Then, for i 6= j , we see that

Cov[Zi,Zj ] = Cov(ωZM+
√

1−ω2Wi,ωZM

+

√
1−ω2Wj )

= ω2Cov(ZM,ZM)

= ω2 (C2)

using pairwise independence of ZM,Wi , and Wj . Using a
similar technique we see

Cov[Z0,Zi] = ωρ. (C3)

Now let Z = (Z0,Z1, . . .,Zk)
′. Then,

Cov[Z] =



1 ωρ . . . . . . ωρ

ωρ
. . . ω2 . . . ω2

... ω2 . . .
. . .

...
...

...
. . .

. . . ω2

ωρ ω2 . . . ω2 1


. (C4)

Setting ρ = ω is thus necessary (except for the trivial case
where ω = 0) and sufficient for univariate probabilistic cal-
ibration of the ensemble as this choice makes Z0 indistin-
guishable from Z1, . . .,Zk in distribution.

Appendix D: Sensitivity of FTE histograms to forecast
skill

The simulation setup introduced in Sect. 3.2 allows us to con-
trol the skill of the synthetic ensemble forecasts through the
parameters ρ and ω, where (as shown above) the restriction
ρ = ω is required to ensure calibration of the marginal dis-
tributions. Does the sensitivity of the FTE histogram to mis-
specified correlation lengths change with changing forecast
skill? To investigate this further, we show results for the ex-
treme “no skill” case where ρ = ω = 0, to complement those
shown above where we simulated forecasts with a relatively
high correlation (ρ = ω = 0.8) between ensemble mean and
verification at each grid point. The other parameters remain
unchanged; i.e., simulation experiments are performed for
a0 = 2 and aM ∈ {1,1.8,2,2.2,3}. By Eq. (8), the ensemble
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members are then independent realizations of a mean zero
Gaussian random field with Matérn covariance having corre-
lation length a = aM.

Figure D1 gives an example of simulated ensemble mem-
ber fields which are mutually independent and uncorrelated
with the verification field, while their spatial structure is 10 %
miscalibrated in the case of rows A and C. In contrast to
Fig. 3, where the positive skill of the ensemble forecasts en-
tails some degree of correspondence between the features in
the forecast and verification fields, there is no such corre-
spondence in between the fields in Fig. D1. The correspond-
ing FTE histograms and their associated β-scores, however,
are able to identify row B as spatially calibrated and row A
(row C) as having a correlation length ratio that is too small
(large).

A similar story is provided by Fig. D2, which, like
Fig. 5 where ρ = ω = 0.8, demonstrates how the estimated
β-distribution parameters, β-score, and β-bias vary over in-
creasing thresholds for different correlation length ratios.
While the associated experiments differ in that ensemble
members have no univariate skill here (i.e., ρ = ω = 0), the
behavior witnessed in the two figures is nearly indistinguish-
able. Thus, we conclude that correlation between the ensem-
ble and verification has a negligible effect on the FTE his-
tograms’ ability to detect miscalibration in spatial structure.
This was not obvious to us a priori, but perhaps one can think
of these “no skill” simulations as the residual fields that re-
main after the “predictable component” has been subtracted
from both ensemble member and verification fields. In any
case, the insensitivity to forecast skill is good news for the
practical application of FTE histograms, where forecast skill
is usually unknown and confounding effects are undesirable.
It is a reminder though that they are a tool for assessing fore-
cast calibration, not forecast skill.
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Figure D1. As Fig. 3 but ensemble fields are constructed with skill parameter ρ = ω = 0.

Figure D2. As Fig. 5 but ensemble fields are constructed with skill parameter ρ = ω = 0.
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