Articles | Volume 29, issue 1
Nonlin. Processes Geophys., 29, 133–139, 2022
https://doi.org/10.5194/npg-29-133-2022
Nonlin. Processes Geophys., 29, 133–139, 2022
https://doi.org/10.5194/npg-29-133-2022
NPG Letters
28 Mar 2022
NPG Letters | 28 Mar 2022

Control simulation experiment with Lorenz's butterfly attractor

Takemasa Miyoshi and Qiwen Sun

Related authors

An ensemble Kalman filter system with the Stony Brook Parallel Ocean Model v1.0
Shun Ohishi, Tsutomu Hihara, Hidenori Aiki, Joji Ishizaka, Yasumasa Miyazawa, Misako Kachi, and Takemasa Miyoshi
Geosci. Model Dev., 15, 8395–8410, https://doi.org/10.5194/gmd-15-8395-2022,https://doi.org/10.5194/gmd-15-8395-2022, 2022
Short summary
A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF
Shunji Kotsuki, Takemasa Miyoshi, Keiichi Kondo, and Roland Potthast
Geosci. Model Dev., 15, 8325–8348, https://doi.org/10.5194/gmd-15-8325-2022,https://doi.org/10.5194/gmd-15-8325-2022, 2022
Short summary
Control Simulation Experiments of Extreme Events with the Lorenz-96 Model
Qiwen Sun, Takemasa Miyoshi, and Serge Richard
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2022-12,https://doi.org/10.5194/npg-2022-12, 2022
Preprint under review for NPG
Short summary
Guidance on how to improve vertical covariance localization based on a 1000-member ensemble
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
EGUsphere, https://doi.org/10.5194/egusphere-2022-434,https://doi.org/10.5194/egusphere-2022-434, 2022
Short summary
An EnKF-based ocean data assimilation system improved by adaptive observation error inflation (AOEI)
Shun Ohishi, Takemasa Miyoshi, and Misako Kachi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-91,https://doi.org/10.5194/gmd-2022-91, 2022
Revised manuscript accepted for GMD
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Using a hybrid optimal interpolation–ensemble Kalman filter for the Canadian Precipitation Analysis
Dikraa Khedhaouiria, Stéphane Bélair, Vincent Fortin, Guy Roy, and Franck Lespinas
Nonlin. Processes Geophys., 29, 329–344, https://doi.org/10.5194/npg-29-329-2022,https://doi.org/10.5194/npg-29-329-2022, 2022
Short summary
Reduced non-Gaussianity by 30 s rapid update in convective-scale numerical weather prediction
Juan Ruiz, Guo-Yuan Lien, Keiichi Kondo, Shigenori Otsuka, and Takemasa Miyoshi
Nonlin. Processes Geophys., 28, 615–626, https://doi.org/10.5194/npg-28-615-2021,https://doi.org/10.5194/npg-28-615-2021, 2021
Short summary
A study of capturing Atlantic meridional overturning circulation (AMOC) regime transition through observation-constrained model parameters
Zhao Liu, Shaoqing Zhang, Yang Shen, Yuping Guan, and Xiong Deng
Nonlin. Processes Geophys., 28, 481–500, https://doi.org/10.5194/npg-28-481-2021,https://doi.org/10.5194/npg-28-481-2021, 2021
Short summary
Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation
Sangeetika Ruchi, Svetlana Dubinkina, and Jana de Wiljes
Nonlin. Processes Geophys., 28, 23–41, https://doi.org/10.5194/npg-28-23-2021,https://doi.org/10.5194/npg-28-23-2021, 2021
Short summary
Simulating model uncertainty of subgrid-scale processes by sampling model errors at convective scales
Michiel Van Ginderachter, Daan Degrauwe, Stéphane Vannitsem, and Piet Termonia
Nonlin. Processes Geophys., 27, 187–207, https://doi.org/10.5194/npg-27-187-2020,https://doi.org/10.5194/npg-27-187-2020, 2020
Short summary

Cited articles

Atlas, R., Kalnay, E., Baker, W. E., Susskind, J., Reuter, D., and Halem, M.: Simulation studies of the impact of future observing systems on weather prediction, Preprints, Seventh Conf. on Numerical Weather Prediction, Montreal, QC, Canada, Amer. Meteor. Soc., 145–151, 1985. 
Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H., and Maza, D.: The control of chaos: theory and applications, Phys. Rep., 329, 103–197, https://doi.org/10.1016/S0370-1573(99)00096-4, 2000.  
Evans, E., Bhatti, N., Kinney, J., Pann, L., Peňa, M., Yang, S. C., Kalnay, E., and Hansen, J.: RISE undergraduates find that regime changes in Lorenz's model are predictable, B. Am. Meteorol. Soc., 85, 521–524, 2004. 
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994. 
Evensen, G.: Advanced data assimilation for strongly nonlinear dynamics, Mon. Weather Rev., 125, 1342–1354, 1997. 
Download
Short summary
The weather is chaotic and hard to predict, but the chaos implies an effective control where a small control signal grows rapidly to make a big difference. This study proposes a control simulation experiment where we apply a small signal to control nature in a computational simulation. Idealized experiments with a low-order chaotic system show successful results by small control signals of only 3 % of the observation error. This is the first step toward realistic weather simulations.