Articles | Volume 29, issue 1
https://doi.org/10.5194/npg-29-133-2022
https://doi.org/10.5194/npg-29-133-2022
NPG Letters
 | 
28 Mar 2022
NPG Letters |  | 28 Mar 2022

Control simulation experiment with Lorenz's butterfly attractor

Takemasa Miyoshi and Qiwen Sun

Related authors

Comparative study of strongly and weakly coupled data assimilation with a global land–atmosphere coupled model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
Nonlin. Processes Geophys., 30, 457–479, https://doi.org/10.5194/npg-30-457-2023,https://doi.org/10.5194/npg-30-457-2023, 2023
Short summary
Control simulation experiments of extreme events with the Lorenz-96 model
Qiwen Sun, Takemasa Miyoshi, and Serge Richard
Nonlin. Processes Geophys., 30, 117–128, https://doi.org/10.5194/npg-30-117-2023,https://doi.org/10.5194/npg-30-117-2023, 2023
Short summary
Guidance on how to improve vertical covariance localization based on a 1000-member ensemble
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
Nonlin. Processes Geophys., 30, 13–29, https://doi.org/10.5194/npg-30-13-2023,https://doi.org/10.5194/npg-30-13-2023, 2023
Short summary
An ensemble Kalman filter-based ocean data assimilation system improved by adaptive observation error inflation (AOEI)
Shun Ohishi, Takemasa Miyoshi, and Misako Kachi
Geosci. Model Dev., 15, 9057–9073, https://doi.org/10.5194/gmd-15-9057-2022,https://doi.org/10.5194/gmd-15-9057-2022, 2022
Short summary
An ensemble Kalman filter system with the Stony Brook Parallel Ocean Model v1.0
Shun Ohishi, Tsutomu Hihara, Hidenori Aiki, Joji Ishizaka, Yasumasa Miyazawa, Misako Kachi, and Takemasa Miyoshi
Geosci. Model Dev., 15, 8395–8410, https://doi.org/10.5194/gmd-15-8395-2022,https://doi.org/10.5194/gmd-15-8395-2022, 2022
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Quantum data assimilation: a new approach to solving data assimilation on quantum annealers
Shunji Kotsuki, Fumitoshi Kawasaki, and Masanao Ohashi
Nonlin. Processes Geophys., 31, 237–245, https://doi.org/10.5194/npg-31-237-2024,https://doi.org/10.5194/npg-31-237-2024, 2024
Short summary
A Comparison of Two Nonlinear Data Assimilation Methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-3,https://doi.org/10.5194/npg-2024-3, 2024
Revised manuscript accepted for NPG
Short summary
Comparative study of strongly and weakly coupled data assimilation with a global land–atmosphere coupled model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
Nonlin. Processes Geophys., 30, 457–479, https://doi.org/10.5194/npg-30-457-2023,https://doi.org/10.5194/npg-30-457-2023, 2023
Short summary
Reducing manipulations in a control simulation experiment based on instability vectors with the Lorenz-63 model
Mao Ouyang, Keita Tokuda, and Shunji Kotsuki
Nonlin. Processes Geophys., 30, 183–193, https://doi.org/10.5194/npg-30-183-2023,https://doi.org/10.5194/npg-30-183-2023, 2023
Short summary

Cited articles

Atlas, R., Kalnay, E., Baker, W. E., Susskind, J., Reuter, D., and Halem, M.: Simulation studies of the impact of future observing systems on weather prediction, Preprints, Seventh Conf. on Numerical Weather Prediction, Montreal, QC, Canada, Amer. Meteor. Soc., 145–151, 1985. 
Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H., and Maza, D.: The control of chaos: theory and applications, Phys. Rep., 329, 103–197, https://doi.org/10.1016/S0370-1573(99)00096-4, 2000.  
Evans, E., Bhatti, N., Kinney, J., Pann, L., Peňa, M., Yang, S. C., Kalnay, E., and Hansen, J.: RISE undergraduates find that regime changes in Lorenz's model are predictable, B. Am. Meteorol. Soc., 85, 521–524, 2004. 
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994. 
Evensen, G.: Advanced data assimilation for strongly nonlinear dynamics, Mon. Weather Rev., 125, 1342–1354, 1997. 
Download
Short summary
The weather is chaotic and hard to predict, but the chaos implies an effective control where a small control signal grows rapidly to make a big difference. This study proposes a control simulation experiment where we apply a small signal to control nature in a computational simulation. Idealized experiments with a low-order chaotic system show successful results by small control signals of only 3 % of the observation error. This is the first step toward realistic weather simulations.