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Abstract. In numerical weather prediction (NWP), sensitiv-
ity to initial conditions brings chaotic behaviors and an in-
trinsic limit to predictability, but it also implies an effective
control in which a small control signal grows rapidly to make
a substantial difference. The Observing Systems Simulation
Experiment (OSSE) is a well-known approach to study pre-
dictability, where “nature” is synthesized by an independent
NWP model run. In this study, we extend the OSSE and de-
sign the control simulation experiment (CSE), where we ap-
ply a small signal to control “nature”. Idealized experiments
with the Lorenz-63 three-variable system show that we can
control “nature” to stay in a chosen regime without shifting
to the other, i.e., in a chosen wing of Lorenz’s butterfly attrac-
tor, by adding small perturbations to “nature”. Using longer-
lead-time forecasts, we achieve more effective control with a
perturbation size of less than only 3 % of the observation er-
ror. We anticipate our idealized CSE to be a starting point for
a realistic CSE using the real-world NWP systems, toward
possible future applications to reduce weather disaster risks.
The CSE may be applied to other chaotic systems beyond
NWP.

1 Introduction

The “butterfly effect”, discovered by Lorenz in the 1960s
(Lorenz, 1963, 1993), is a phenomenon that an infinitesimal
perturbation like “a butterfly flapping its wings in Brazil”
causes a big consequence like “a tornado in Texas”. This
extreme sensitivity brings chaotic behaviors and an intrinsic
limit to predictability, but it also allows us to design an effec-

tive control which was explored as “the control of chaos” in
the 1990s (e.g., a review by Boccaletti et al., 2000). That is,
we could take advantage of the “butterfly effect” and design
an effective control with a series of infinitesimal interven-
tions leading to a desired future. The control of weather is
humans’ long-time desire, and if we know when and where
to put a “butterfly”, we could lead a better life by, for exam-
ple, reducing the risks of tornadoes.

Predictability has been studied extensively, and we enjoy
current high-quality weather prediction that is consistently
being improved. However, studies on controllability are lim-
ited because we had to first improve the prediction accuracy
and because our engineering power may be insufficient to
enforce large enough perturbations to the atmosphere. Based
on recent high-quality numerical weather prediction (NWP),
this study attempts to explore a computational simulation ap-
proach to weather controllability. The simulation studies re-
veal what perturbations are needed to modify and control the
weather. Mutual interactions between the simulation studies
and the intervention techniques would be essential for future
developments toward real-world applications.

Previous efforts in weather modification include rain en-
hancement studies (e.g., a review by Flossmann et al., 2019)
by cloud seeding with ground-based facilities and aircraft in-
jecting smokes and dry ices into moist air, so that the aerosols
act as cloud condensation nuclei and enhance cloud forma-
tion. These studies greatly helped advance our knowledge
about physical processes of clouds and precipitation, but in
terms of controlling the weather, we had only limited success
with unclear implications for high-impact weather events,
mainly because this method works only with supersaturated
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air. On the climate scale, geoengineering is a widely dis-
cussed concept, such as launching mirror satellites to reflect
the sunlight and injecting dusts into the stratosphere to block
the sunlight to cool the air. Li et al. (2018) performed com-
putational simulations and explored potential rain enhance-
ments in the Sahel region by implementing large-scale wind
and solar farms over the Sahara and modulating the global at-
mospheric circulation. However, actual geoengineering oper-
ations are controversial because they may cause irreversible
unexpected side-effects due to our limited knowledge of the
Earth system. The accepted and currently ongoing operations
to counteract the current climate change may be limited in re-
ducing the greenhouse gas emissions and enhancing renew-
ables and recycles.

Our focus here is different. We aim to apply “the control of
chaos” to the weather. We do not aim to cause a permanent
irreversible change to nature, but we would like to control
the weather within its natural variability and to aid human
activities, for example, by shifting the location of an extreme
rain region to avoid disasters without causing a side-effect
on the global climate. For extreme weather that occurs in a
chaotic manner under natural variations, the control of chaos
suggests that proper infinitesimal perturbations to the natural
atmosphere alter the orbit of the atmospheric dynamics to a
desired direction. If the proper infinitesimal perturbations are
within our engineering capability, we could apply the control
in the real world. However, we cannot be too cautious about
potential side-effects and must consider and address every
possible consequence. We will come back to this issue later
in conclusion.

Here we develop a method of the control simulation ex-
periment (CSE). It would be straightforward to extend the
method to broader fields with chaotic dynamics beyond
NWP. Weather prediction has been improved consistently by
studying predictability and better initial conditions for NWP.
Data assimilation (DA) combines the NWP model and obser-
vation data for optimal prediction. The method of DA shares
that of optimal control, such as the Kalman filter (Kalman,
1960), where prediction and control are the two sides of a
coin. DA has been studied extensively to improve the predic-
tion, and this study illuminates the control.

The Observing Systems Simulation Experiment (OSSE)
is a powerful method to simulate an NWP system (e.g., At-
las, 1985; Hoffmann and Atlas, 2016). The OSSE can be de-
signed to assess the impact of certain observing systems and
is useful, for example, for evaluating the potential value of
a new satellite sensor before launch. The OSSE can also be
designed to evaluate DA methods. In the OSSE, an indepen-
dent model run acts as a synthetic “nature run” (NR), and we
simulate observations by sampling the NR. The NWP system
is blind to the NR, takes the simulated observations, and es-
timates the NR. We compare the estimation accuracy among
different OSSEs with different observations and different DA
methods.

Here we extend the OSSE and apply small perturbations
to the NR to alter the orbit to a desired direction. Investigat-
ing effective perturbations would address the controllability.
As a proof of concept, we focus on the essence of the prob-
lem and use Lorenz’s three-variable model (L63, Lorenz,
1963) instead of using a complex large-scale NWP model. In
predictability studies, OSSEs are often performed with such
simple idealized models like L63 to explore new DA meth-
ods before application to real NWP models (e.g., Kalnay et
al., 2007; Yang et al., 2012). L63 is often used to focus on the
essence of the problem since L63 shows typical chaotic be-
haviors, with the solution manifold being a well-known “but-
terfly attractor” (Fig. 1a), which has two regimes or wings
corresponding to the positive and negative values for variable
x. The regime shifts randomly, and the predictability is lim-
ited due to chaos. Evans et al. (2004) revealed predictability
of the regime shift from rapidly growing uncertainties given
by the growth rate of specific growing perturbations known
as the bred vectors (Toth and Kalnay, 1993).

2 Experiments

We first perform a regular OSSE following the previous stud-
ies (Kalnay et al., 2007; Yang et al., 2012). The L63 system
with the standard choice of the parameters (Lorenz, 1963) is
discretized in time by the Runge–Kutta fourth-order scheme
with a time step of 0.01 units. We define one step as 0.01
units throughout the paper. We assimilate observations every
Ta = 8 steps. A round of the orbit, i.e., from a maximum to
the next maximum for variable x, corresponds to T0 = 75.1
steps on average. We use the ensemble Kalman filter (EnKF,
e.g., Evensen, 1994; Houtekamer and Zhang, 2016) with
three ensemble members, which represent equally probable
state estimates. For simplicity, we observe all three variables
in this study but any subset of observations except for ob-
serving only z variable results in the same conclusion, as
suggested by the previous study on chaos synchronization
(Yang et al., 2006). The observation noise is generated from
the normal distribution for each variable independently with
the variance of 2.0. The EnKF results in an accurate state
estimation of the root mean square error (RMSE) of 0.32,
consistent with the previous studies.

Next, we extend the OSSE and design a CSE. The goal of
the control is to stay in a wing of the butterfly attractor with-
out shifting to the other. It is essential that our prediction and
control system is blind to the NR and takes only the imper-
fect observations. The control system finds when and what
perturbations to add to the NR as follows (cf. Fig. 2).

1. Perform a DA update using the observations at time t

(t = 0 in Fig. 2).
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Figure 1. Phase space of the three-variable Lorenz model. (a) Lorenz’s butterfly attractor from the NR without control; (b) the NR under
control (D = 0.05, T = d4T0e). Each dot shows every time step for 8000 steps. See also a movie at https://doi.org/10.5446/54893.

Figure 2. Control cases with T = d4T0e and D = 0.05 for (a) NR changed (C), (b) false alarm (FA), and (c) NR unchanged (NC). Red ticks
at the beginning (t = 1,. . . ,7) show addition of perturbations to the NR.

2. Run an ensemble forecast for T steps from time t to
t+T (T = d4T0e in Fig. 2, where d e indicates rounding
up to the closest integer since the model integration is
discretized).

3. If at least one ensemble member shows the regime shift,
activate the control (step 4); otherwise, go to step 1 for
the next DA at time t + Ta.

4. Add perturbations with Euclidean norm D to the NR
at every step from t+1 to t+Ta−1. More precisely, at
time t+i (i = 1,. . . ,Ta−1), the NR state is evolved from
the previous NR state at time t + i− 1 and is perturbed
by adding (dx, dy, dz), where

√
dx2+ dy2+ dz2 =D

(Fig. 2 red ticks, indicating perturbations added to the
NR with D = 0.05).

5. At time t + Ta, the new NR is used to simulate the ob-
servations; go to step 1 for the next DA at time t + Ta.

Step 4 requires perturbations added to the NR. Investigating
different strategies to generate the perturbations addresses
controllability. Randomly chosen perturbations are found to
be ineffective, but instead we find the following strategy ef-
fective. We choose an ensemble member “S” showing the
regime shift and another ensemble member “N” not show-
ing the regime shift. If all three ensemble members show the

regime shift, we use the ensemble members from the former
initial times for an extended forecasting period and identify
an ensemble member “N” not showing the regime shift dur-
ing the period from t to t + T . Take the differences of the
two ensemble members S−N for every step from t + 1 to
t + Ta− 1 (1 to 7 in Fig. 2) before the next observations are
available at t + Ta (8 in Fig. 2). The differences are used
as perturbations added to the NR at appropriate time steps.
Here, we consider the limitation of our intervention and in-
clude only a subset of the three variables (x, y, z) with a lim-
ited perturbation size. The choice of the variables and norm
D are the parameters for intervention.

Figure 2 illustrates three different cases with perturbations
added to all three variables (x, y, z) with D = 0.05 and T =

d4T0e. With these settings the control is successful, as shown
in Fig. 1b for 8000 steps. Figure 2a shows the case in which
the NR is changed by the control and stays in the positive-
x regime successfully (simply “C” for change). Figure 2b
shows the case of a false alarm (FA), in which the NR does
not show the regime shift but the ensemble prediction does.
Therefore, the perturbations are added unnecessarily but do
not hurt. Figure 2c shows the case in which the NR is not
changed by control and still shows the regime shift (simply
“NC” for no change).

To investigate the sensitivity to the parameters T and D

and the choice of the perturbed variables, we perform 40 in-
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Figure 3. Rates of successful control out of 40 CSEs for perturbations added to variables (a) x, y, z, (b) x, y, (c) x, z, (d) y, z, (e) x, (f) y,
and (g) z.

dependent experiments for each setting for 8000 steps (1000
DA cycles; cf. Appendix A for the exact choices of the ini-
tial conditions) and count the number of successful experi-
ments in which the NR stays in a single regime under con-
trol. Higher success rates correspond to better controllability.
With longer forecasts (larger T ), control is generally more
effective (Fig. 3). With small T <d2.5T0e, the success rates
are very low. The mean transition time for the regime shift
is approximately 2.3T0, which may be the minimum fore-
cast length for effective control. With very small perturba-
tions (D = 0.02), the control is difficult, but a larger D does
not necessarily improve the success rate. The perturbations
are added every step, and the state evolves by approximately
0.5 (Euclidean norm) in one step on average (Table 1). This
is about half of the evolution without control, suggesting
that the perturbations effectively drag the NR states toward
more stable regions of the attractor (cf. Fig. 1 and a movie at
https://doi.org/10.5446/54893). Adding larger perturbations
with a similar size to the one-step model evolution tends to
reduce the effect of control. Although observing only z is not
sufficient for DA, it is good for control. Perturbing only one
variable y or z is effective with T = d4T0e and D>0.04, only
an eighth of the analysis error of 0.32 or only 3 % of the ob-
servation error standard deviation of

√
2. In short, the L63

regime change is considerably controllable.
We further investigate the rates of FAs and NR changed

(C) and unchanged (NC) by perturbations (Fig. 4a). With
larger D, we find generally fewer interventions. With smaller
D, we have more interventions mostly by FA. With smaller
D, higher rates of NC suggest that longer-term small inter-
ventions are needed. Additional experiments by not apply-
ing FA and/or NC perturbations reveal the relative impor-
tance of these perturbations (Fig. 4b). These experiments re-
quire knowing the NR T steps in advance and therefore are
not practical but are useful for understanding the roles of
these perturbations. For D = 0.2 and smaller, not applying

FA perturbations does not significantly contribute to the con-
trol (Fig. 4b, yellow), whereas not applying NC has a signif-
icant impact on reducing the effect of control (Fig. 4b, blue,
green). That is, the accumulation of NC perturbations would
be essential for effective control. With large D>0.2, not ap-
plying FA and NC perturbations significantly enhances the
effect of control (Fig. 4b, green). With the perturbation size
similar to or even larger than the one-step model evolution
(Table 1), a single instance of C perturbations is quite signif-
icant. In these cases, FA and NC perturbations are found to
be harmful.

Finally, we perform additional sensitivity experiments
with a longer DA interval of Ta = 25 steps and with par-
tial observations; i.e., only one or two variables are observed.
The results generally agree with what has been shown so far
(cf. Appendix B).

3 Conclusions

In this study, we proposed the CSE with numerical demon-
stration using the L63 three-variable model. The OSSE is a
well-known, powerful approach to study predictability and
to evaluate DA methods and observing systems without hav-
ing real-world observation data. The CSE is an extension to
the OSSE to study controllability and can be applied to var-
ious dynamical systems including full-scale NWP models.
Our future studies apply the CSE to more complex models
and investigate different control scenarios such as controlling
the occurrences of extreme events. Such studies will address
critical issues like how manageable interventions in terms of
cost and energy can make differences to extreme events. This
study is only a small step toward broad investigations that
may lead to effective control of weather events.

As we described in the introduction, any real-world ap-
plication requires extensive caution. For the case of the L63
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Table 1. Averaged one-step model evolution in the Euclidean norm (OME) and the relative size of perturbations (D/OME). Only successful
control cases are considered for CSEs with T = d4T0e and perturbations added to variables x, y, and z. “NA” indicates not available.

D 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 No control
OME 0.694 0.608 0.594 0.577 0.536 0.488 0.461 0.422 0.403 0.956
D/OME 0.029 0.049 0.067 0.087 0.186 0.410 0.651 0.947 1.239 NA

Figure 4. (a) Rates of the cases of C (red), FA (yellow), and NC (blue) for the successful control experiments with T = d4T0e and perturba-
tions added to variables x, y, and z. The rates indicate the number of cases out of a total of 1000 DA cycles. (b) Rates of successful control
experiments with T = d4T0e and perturbations added to variables x, y, and z for the original CSE (grey; cf. Fig. 3a), the CSE without apply-
ing FA perturbations (yellow), the CSE without applying NC perturbations (blue), and the CSE without applying FA and NC perturbations
(green).

model, one side of the attractor may not be desirable for all
aspects. We must consider and assess every potential impact
caused by the control and have proper protocols for social,
ethical, and legal agreement about real-world operations.

Appendix A: The initial conditions of 40 CSEs

The OSSE with the L63 model follows that of the previ-
ous studies (Kalnay et al., 2007; Yang et al., 2012; Miller
et al., 1994; Evensen, 1997). Here we describe the addi-
tional details that were not provided in the previous papers
but that are necessary to repeat the experiment in this study.
The initial condition for the NR was chosen to be (x, y,
z)= (8.20747939, 10.0860429, 23.86324441) after running
the L63 model for 1000 steps initialized by the three state
variables taken from independent random draws from a nor-
mal distribution with mean 0 and variance 2.0. The NR was
8 million steps long, and the OSSE was performed for the
same period as the NR.

The CSEs were performed for a total of 378 combinations
of T , D, and the choice of intervention. There were nine,
five, and seven choices of T , D, and intervention, as shown
in Fig. 3. For each combination, 40 independent CSEs were
performed for 8000 steps. The initial conditions for the 40
CSEs were chosen from the analyzed states of the OSSE at
different time points as shown in Table A1. Figure 1b shows
CSE no. 1 and Fig. 1a the corresponding period of the NR.

Appendix B: Additional sensitivity experiments

CSEs are performed with a longer DA interval of Ta = 25
steps, which results in an RMSE of 0.76, consistent with the
previous studies. The results are generally consistent (Fig. B1
compared with Fig. 3).

CSEs are performed with different observing coverages,
and the results are summarized in Table B1. Multiplicative
inflation is manually tuned for each observing coverage.
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Table A1. Time points of the NR providing the initial conditions of the 40 independent CSEs. The initial time point coincides with the time
when observations are available, i.e., only every Ta = 8 steps, and the formula underneath the table provides the exact initial time point from
the value in the table for a given parameter of T .

CSE index Time point of the NR CSE index Time point of the NR CSE index Time point of the NR CSE index Time point of the NR

1 106 069 11 126 902 21 150 056 31 173 894
2 107 043 12 128 058 22 150 796 32 175 011
3 109 371 13 130 718 23 152 308 33 179 671
4 111 261 14 132 342 24 155 048 34 184 480
5 112 987 15 133 311 25 155 666 35 197 270
6 114 146 16 138 699 26 162 753 36 199 278
7 122 065 17 140 562 27 164 411 37 200 712
8 124 720 18 144 953 28 168 461 38 201 304
9 125 339 19 147 614 29 172 109 39 208 511
10 125 854 20 149 418 30 173 399 40 209 397

Initial time point = time point of the NR− T − [(time point of the NR− T ) mod Ta].

Figure B1. Similar to Fig. 3 but for the case with a longer DA interval of Ta = 25.

Table B1. Rates of successful control out of 40 CSEs with different observing coverage. T = d4T0e and perturbations are added to variables
x, y, and z.

D Obs x Obs y Obs x, y Obs x, z Obs y, z Obs x, y, z

0.02 0 0.025 0.05 0.125 0 0.05
0.03 1 0.95 0.95 0.975 0.975 0.975
0.04 1 0.975 0.95 1 1 0.925
0.05 1 1 0.975 1 1 0.975
0.1 1 1 1 1 1 0.825
0.2 0.975 0.925 0.85 0.975 0.975 0.825
0.3 0.95 0.925 0.675 0.975 0.95 0.725
0.4 0.95 0.8 0.78 0.975 0.875 0.5
0.5 0.9 0.75 0.65 0.95 0.85 0.525
Ensemble spread 0.807 0.469 0.376 0.477 0.323 0.27
RMSE 0.908 0.507 0.412 0.564 0.356 0.32
Multiplicative inflation 1.065 1.05 1.045 1.09 1.06 1.04
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