Articles | Volume 28, issue 4
https://doi.org/10.5194/npg-28-615-2021
https://doi.org/10.5194/npg-28-615-2021
Research article
 | 
01 Nov 2021
Research article |  | 01 Nov 2021

Reduced non-Gaussianity by 30 s rapid update in convective-scale numerical weather prediction

Juan Ruiz, Guo-Yuan Lien, Keiichi Kondo, Shigenori Otsuka, and Takemasa Miyoshi

Related authors

Localization in the mapping particle filter
Juan Martin Guerrieri, Manuel Arturo Pulido, Takemasa Miyoshi, Arata Amemiya, and Juan José Ruiz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2420,https://doi.org/10.5194/egusphere-2025-2420, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Analog data assimilation for the selection of suitable general circulation models
Juan Ruiz, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec, and Pierre Tandeo
Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022,https://doi.org/10.5194/gmd-15-7203-2022, 2022
Short summary
Volcanic ash forecast using ensemble-based data assimilation: an ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF–FALL3D version 1.0)
Soledad Osores, Juan Ruiz, Arnau Folch, and Estela Collini
Geosci. Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020,https://doi.org/10.5194/gmd-13-1-2020, 2020
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Bridging Data Assimilation and Control: Ensemble Model Predictive Control for High-Dimensional Nonlinear Systems
Kenta Kurosawa, Atsushi Okazaki, Fumitoshi Kawasaki, and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2025-595,https://doi.org/10.5194/egusphere-2025-595, 2025
Short summary
Evaluation of Effectiveness of Intervention Strategy in Control Simulation Experiment through Comparison with Model Predictive Control
Rikuto Nagai, Yang Bai, Masaki Ogura, Shunji Kotsuki, and Naoki Wakamiya
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-26,https://doi.org/10.5194/npg-2024-26, 2024
Revised manuscript accepted for NPG
Short summary
Explaining the high skill of Reservoir Computing methods in El Niño prediction
Francesco Guardamagna, Claudia Wieners, and Henk Dijkstra
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-24,https://doi.org/10.5194/npg-2024-24, 2024
Revised manuscript accepted for NPG
Short summary
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
On Process-Oriented Conditional Targeted Covariance Inflation (TCI) for 3D-Volume Radar Data Assimilation
Klaus Vobig, Roland Potthast, and Klaus Stephan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2876,https://doi.org/10.5194/egusphere-2024-2876, 2024
Short summary

Cited articles

Aksoy, A., Dowell, D. C., and Snyder, C.: A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses, Mon. Weather Rev., 137, 1805–1824, https://doi.org/10.1175/2008MWR2691.1, 2009. a
Beljaars, A. C. M. and Holtslag, A. A. M.: Flux Parameterization over Land Surfaces for Atmospheric Models, J. Appl. Meteorol., 30, 327–341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2, 1991. a
Bick, T., Simmer, C., Trömel, S., Wapler, K., Hendricks Franssen, H.-J., Stephan, K., Blahak, U., Schraff, C., Reich, H., Zeng, Y., and Potthast, R.: Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale, Q. J. Roy. Meteor. Soc., 142, 1490–1504, https://doi.org/10.1002/qj.2751, 2016. a
Evensen, G.: The ensemble Kalman filter for combined state and parameter estimation, IEEE Contr. Syst. Mag., 29, 83–104, https://doi.org/10.1109/MCS.2009.932223, 2009. a, b
Honda, T., Miyoshi, T., Lien, G.-Y., Nishizawa, S., Yoshida, R., Adachi, S. A., Terasaki, K., Okamoto, K., Tomita, H., and Bessho, K.: Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015), Mon. Weather Rev., 146, 213–229, https://doi.org/10.1175/MWR-D-16-0357.1, 2018. a
Download
Short summary
Effective use of observations with numerical weather prediction models, also known as data assimilation, is a key part of weather forecasting systems. For precise prediction at the scales of thunderstorms, fast nonlinear processes pose a grand challenge because most data assimilation systems are based on linear processes and normal distribution errors. We investigate how, every 30 s, weather radar observations can help reduce the effect of nonlinear processes and nonnormal distributions.
Share