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Abstract. Non-Gaussian forecast error is a challenge for
ensemble-based data assimilation (DA), particularly for more
nonlinear convective dynamics. In this study, we investi-
gate the degree of the non-Gaussianity of forecast error dis-
tributions at 1 km resolution using a 1000-member ensem-
ble Kalman filter, and how it is affected by the DA up-
date frequency and observation number. Regional numeri-
cal weather prediction experiments are performed with the
SCALE (Scalable Computing for Advanced Library and En-
vironment) model and the LETKF (local ensemble transform
Kalman filter) assimilating phased array radar observations
every 30 s. The results show that non-Gaussianity develops
rapidly within convective clouds and is sensitive to the DA
frequency and the number of assimilated observations. The
non-Gaussianity is reduced by up to 40 % when the assimila-
tion window is shortened from 5 min to 30 s, particularly for
vertical velocity and radar reflectivity.

1 Introduction

The Kalman filter (KF) is the minimum variance linear unbi-
ased estimator of the state of a dynamical system. The en-
semble Kalman filter (EnKF; Evensen, 2009; Houtekamer

and Zhang, 2016) is a Monte Carlo extension to the KF
suitable for nonlinear systems with a large number of vari-
ables, so it became a viable choice for data assimilation
(DA) in numerical weather prediction (NWP) and other geo-
science applications. The EnKF is optimal in the sense of
maximum likelihood estimation when the error distributions
are Gaussian (Evensen, 2009), but it becomes suboptimal
when the observational and forecast error distributions depart
from the Gaussian (Lei et al., 2010). Miyoshi et al. (2014);
Miyoshi et al. (2015) and Kondo and Miyoshi (2019) in-
vestigated non-Gaussianity in forecast error distributions us-
ing a 10 240-member EnKF with global atmospheric mod-
els. They showed that large non-Gaussianity measured by the
Kullback–Leibler divergence is found frequently in the trop-
ics, mainly due to abundance of deep moist convection, and
also in other active areas with a real-world NWP model at rel-
atively low 112 km resolution. In those experiments, temper-
ature and moisture show generally more non-Gaussian dis-
tributions than winds. Recently, the horizontal resolution of
operational NWP systems reached the order of 1 km, which
is fine enough to resolve convective phenomena explicitly.
Obtaining appropriate initial conditions at such a high reso-
lution is a challenge (Sun et al., 2014). The EnKF has been
successfully applied to the mesoscale assimilation of radar
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and satellite data (e.g., Stensrud et al., 2013). However, pre-
vious studies (Jacques and Zawadzki, 2014; Kawabata and
Ueno, 2020) revealed that the underlying assumptions, such
as linear error dynamics and Gaussian error distributions, are
much more questionable in mesoscale than in synoptic and
larger scales.

Miyoshi et al. (2016a, b) developed a so-called big data
assimilation (BDA) system assimilating observations every
30 s at 100 m resolution, taking advantage of new-generation
technologies, like the phased array weather radar (PAWR),
which provide observations at unprecedented high temporal
and spatial resolution. With the BDA configuration under an
idealized observing system simulation experiment (OSSE)
framework, Maejima and Miyoshi (2020) showed that DA
cycles every 1 min resulted in better analyses than cycles ev-
ery 15 min. However, the impact of the DA frequency upon
the forecast error distribution has not been investigated in
real-case convective scale NWP.

This study investigates how the DA frequencies affect non-
Gaussianity using a 1000-member and 1 km mesh EnKF. The
1000 ensemble members would be useful for detecting non-
Gaussian forecast error distributions, as suggested by Kondo
and Miyoshi (2019). Necker et al. (2020a, b) performed simi-
lar experiments and investigated the covariance structure and
the effect of sampling noise at the mesoscale in a heavy rain-
fall event over Germany. Although the previous research em-
ployed data assimilation with only conventional observations
at a 3 h DA frequency, this study is fundamentally different
in the convection-resolving rapid DA cycles with PAWR data
as frequently as every 30 s. The high-frequency data allow
us to investigate the sources of non-Gaussian distributions at
the kilometer scale in the presence of rapidly evolving deep
moist convection. The paper is organized as follows: Sect. 2
describes the methodological aspects. Results are presented
in Sect. 3, and Sect. 4 provides concluding remarks and dis-
cussion.

2 Methodology

We use observations from the PAWR at Osaka University,
Suita, Japan (Yoshikawa et al., 2013, Fig. 1a, red cross). This
PAWR provides a unique data set suitable for this study,
with various assimilation frequencies up to every 10 s at
the fastest. This study follows the case study of Miyoshi
et al. (2016a), focusing on the period between 04:00 and
06:00 UTC, on 13 July 2013, when heavy rains produced
flash floods in Kyoto. Individual convective cells moved from
west to east within a quasi-stationary intense rainband (see
Fig. 1b for a snapshot at 05:30 UTC). For this period, full
volume scans of the PAWR are available every 30 s, with
98 elevation angles, an azimuthal resolution of 1.2◦, and a
range resolution of 100 m up to a maximum range of 60 km
(Fig. 1a, red circle). Unambiguous Doppler velocities are
available in the range −50 to 50 ms−1. PAWR reflectivity

data are quality-controlled, following Ruiz et al. (2015). A
simple quality control algorithm has also been applied to the
Doppler velocity field to remove outliers.

In this study, the regional NWP model known as the
Scalable Computing for Advanced Library and Environment
model (SCALE; Nishizawa et al., 2015) is used, coupled with
the local ensemble transform Kalman filter (LETKF; Hunt
et al., 2007). Lien et al. (2017) and Honda et al. (2018) de-
scribe the SCALE–LETKF system in detail. The model con-
figuration follows Lien et al. (2017), with a single moment
bulk microphysics scheme (Tomita, 2008), a level 2.5 bound-
ary layer turbulence scheme (Nakanishi and Niino, 2004),
the model simulation radiation transfer radiation scheme
(Sekiguchi and Nakajima, 2008), and soil processes repre-
sented by a Beljaars-type soil model (Beljaars and Holtslag,
1991).

The SCALE–LETKF system is implemented over a sin-
gle domain, with a horizontal resolution of 1 km and a size
of 180 km by 180 km (Fig. 1a). There are 50 vertical levels
extending up to 18 km elevation, with a variable grid spac-
ing from 140 to 790 m in a hybrid sigma z terrain-following
coordinate. A 1000-member ensemble is used to assimilate
the observations. Kondo and Miyoshi (2019) showed signif-
icant sampling error contaminations in non-Gaussian mea-
sures when the ensemble size is smaller than 1000. The initial
conditions for the first cycle and the boundary conditions are
taken from the National Centers for Environmental Predic-
tion Global Data Assimilation System final analysis (FNL).
Using FNL as the boundary conditions may be overly opti-
mistic for the forecasting purpose, but this is not relevant to
the goal of this study, which focuses on non-Gaussian distri-
butions and the impact of DA frequency.

The initial ensemble at the first assimilation cycle and
the boundary condition ensemble are created by adding
random perturbations which preserve the hydrostatic and
nearly geostrophic equilibrium (Necker et al., 2020a; Mal-
donado et al., 2021). These perturbations are generated from
a sample of continuous 6 h analysis states provided by the
Climate Forecast System Reanalysis (CFSR; Saha et al.,
2010),

[
XCFSR(t1),XCFSR(t2), . . .,XCFSR(tN )

]
, where N =

5840 (4 years). The horizontal grid spacing of the CFSR data
is 0.5◦. At the beginning of the assimilation cycle (t = ts),
the initial condition perturbation of the ith member X′(i) is
computed as follows:

X′(i)(ts)= α
[
XCFSR(tn1(i)

)−XCFSR(tn2(i)
)
]
,

where α is a multiplicative factor equal to 0.1 so that the am-
plitude of the perturbations is roughly equivalent to 10 % of
the climatological variability. The two CFSR analysis states
are chosen by randomly selecting two numbers n(i)1 and n(i)2
from the N elements satisfying the condition that tn1(i)

and
tn2(i)

correspond to the same time of the year and time of the
day. In the following assimilation cycles at time t > ts , we
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Figure 1. (a) Terrain height of the 1 km mesh SCALE–LETKF domain (shades; meters). The red circle indicates the 60 km radar range
centered at the radar site (red cross) at Osaka University, Suita, Japan. The black box indicates the area shown in panels (b)–(d). (b) Column
maximum PAWR observation (decibel relative to Z; hereafter dBZ) at 05:30 UTC, half an hour after the initialization of the data assimilation
cycle. (c) 5MIN and (d) 30SEC experiments analysis ensemble mean column maximum radar reflectivity (dBZ) at 05:30 UTC. Black lines
indicate the locations of the cross sections displayed in Fig. 2

obtain the boundary perturbations as:

X′(i)(t)= α
[
(1−β)

(
X(tl1(i)

)−X(tl2(i)
)
)

+β
(
X(tu1(i)

)−X(tu1(i)

)]
,

where l(i)1,2 = n
(i)
1,2+m and u

(i)
1,2 = n

(i)
1,2+m+ 1, with m=

floor[(t−ts)/6h] and β = [(t−ts)/6h]−m being a temporal
linear interpolation factor to compute perturbations at arbi-
trary times (not necessarily a multiple of 6 h). In this way, we
obtain perturbations that are smoothly varying in time and
consistent with the large-scale dynamics of the atmosphere.
This procedure is applied to all atmospheric and soil state
variables.

In the SCALE–LETKF system, radar data can be assim-
ilated using different localization scales for different vari-
ables. Based on preliminary experiments with the SCALE–
LETKF using smaller ensemble sizes and PAWR data ev-
ery 30 s, it was found that a vertical localization scale of
2 km (with a 7.3 km or similar cut-off hereafter) produced
good results. For horizontal localization, better results were
obtained using 4 km localization to assimilate observations
with reflectivities> 10 dBZ. Observations of reflectivity val-

ues ≤ 10 dBZ are assimilated with a fixed value of 10 dBZ
to avoid large observation minus forecast departures associ-
ated with clear air reflectivities (Aksoy et al., 2009). Also,
a shorter horizontal localization scale of 2 km is used to re-
duce the impact of non-precipitating observations at the edge
of clouds. Doppler velocity observations are assimilated with
horizontal and vertical localization scales of 10 and 3 km, re-
spectively. For covariance inflation, a relaxation to prior en-
semble spread (RTPS, Whitaker and Hamill, 2012) with a
relaxation parameter of 0.9 is applied. This helps consider
the inhomogeneous distribution of observations as in Lien
et al. (2017).

Reflectivity and Doppler velocity observations are super-
obbed to a horizontal resolution of 1 km and a vertical resolu-
tion of 500 m to approximately match the model resolution.
This helps reduce the errors of representativeness due to the
gap between what is represented by the model and observa-
tion. This procedure can also reduce the impact of possible
spatial correlations in the observation errors. The observa-
tional error standard deviations for these super-observations
are set at 5.0 dBZ and 3.0 ms−1 for reflectivity and Doppler
velocities, respectively. The radar data are assimilated up to
a maximum height of 11 km.
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A spin-up DA experiment with every 5 min PAWR reflec-
tivity and Doppler velocity data is performed for an hour
from 04:00 UTC on 13 July 2013. Only a single PAWR vol-
ume scan closest to the analysis time is assimilated per anal-
ysis. The 1000-member analysis ensemble at 05:00 UTC is
used as the initial conditions for the DA experiments.

Experiments are performed with different DA update fre-
quencies to study the impacts of the DA frequency and ob-
servation number on the forecast error distributions. All ex-
periments share the configuration described above, but the
only differences are the DA frequency and the amount of
data assimilated. First, four experiments with 5, 2, 1, and
0.5 min DA frequencies are performed (hereafter referred
to as 5MIN, 2MIN, 1MIN, and 30SEC, respectively). Here,
only a single-volume scan closest to the analysis time is used
per analysis. That is, more frequent updates assimilate more
data. In all cases, the time difference between the observation
time (center time of the radar volume scan) and the analysis
time do not differ by more than 15 s.

Next, to separate the impact of DA frequency and the
amount of data assimilated, two additional experiments are
performed using a 5 and 1 min DA frequency, with all radar
volumes every 30 s assimilated by a 4-dimensional EnKF ap-
proach (Hunt et al., 2004). These experiments are referred
to as 5MIN-4D and 1MIN-4D, respectively, assimilating the
same amount of data as 30SEC but using longer assimilation
windows.

To measure the degree of non-Gaussianity of the error
distributions, we compute the Kullback–Leibler divergence
(hereafter KLD; Kullback and Leibler, 1951), which is de-
fined as follows:

KLD(P ||Q)=

∞∫
−∞

p(x) ln
p(x)

q(x)
dx, (1)

where p(x) and q(x) are the probability density functions
(PDFs) of P and Q, respectively. The KLD is 0 if P and Q
are the same and takes positive values if P and Q differ. In
our case, p(x) is either the first guess or analysis error dis-
tribution for the state variable x, and q(x) is a Gaussian dis-
tribution whose mean and standard deviation are equal to the
ones of p(x). Therefore, a low KLD value corresponds to the
first guess or analysis error distribution close to a Gaussian.
In the EnKF, we do not have access to the continuous PDF
p(x) but to its finite, limited sample. For each state variable x
(e.g., temperature, wind components, etc.), and at each model
grid point, we approximate p(x) with the sample histogram
from the 1000-member ensemble using 32 equally sized bins
covering the range where p(x) is greater than 0. This range
is defined by the minimum and maximum values of x at each
model grid point and time. Hence, we can approximate the
KLD as follows:

KLD(P ||Q)≈
j=32∑
j=1

pj ln
pj

qj
, (2)

where pj is the empirical frequency of x at the j th histogram
bin. qj is the integral over the j th histogram bin of a Gaus-
sian PDF, whose mean and standard deviation are given by
the ensemble-based sample estimates. After implementing
this, we end up with an estimation of the KLD of the analysis
and first-guess error distributions with respect to the Gaus-
sian for each grid point location, vertical level, and time.

3 Results

All experiments show that the analyzed reflectivity fields are
in good agreement with the observation. However, some dif-
ferences can be found between the experiments that assim-
ilate different amounts of data and with different assimila-
tion windows. For example, Fig. 1c and d show that 30SEC
captures the strong reflectivity areas (> 45 dBZ; orange and
red shadings) better than 5MIN. 5MIN shows noisy patterns
of spurious convective cells surrounding the main convective
rainband.

3.1 Impact of DA frequency on the analysis of a
convective cell

In this section, we explore the impact of data assimilation
frequency over a convective cell located in the cross section
along the black line in Fig. 1b–d at 05:30 UTC. First, the
impact of the data assimilation frequency is explored by the
5MIN, 2MIN, 1MIN, and 30SEC experiments. Here, more
observations are assimilated with more frequent data assimi-
lation. Figure 2 top row (a–d) shows that the reflectivity pat-
terns (Z; shades) are similar among all experiments, but the
vertical velocity (W ; contours) is different. Stronger updrafts
are found in DA experiments with shorter assimilation win-
dows. This suggests that DA frequency have a significant im-
pact upon quantities which are not directly observed.

Strong non-Gaussianity is observed in the first-guess en-
semble in W and temperature T in the 5MIN experiment
(Fig. 2e and i, respectively). Non-Gaussianity for W is
stronger at the southern edge and the highest peak of the
convective cell, which is probably related to the develop-
ment of a new updraft in the southern edge and the top of the
strong updraft, respectively. Weaker low-level maxima south
of the convective line are associated with shallow convective
clouds that are not effectively corrected by radar observa-
tions. The KLD maxima for T are approximately collocated
as those for W . KLD maxima in T can be associated with
non-Gaussianity in W through vertical advection of scalar
quantities such as T and moisture. Another KLD maximum
for T is found near the surface south of the convective cell,
probably associated with the gust front.

Kondo and Miyoshi (2019) found that, in synoptic scales,
the ensemble spread maxima are collocated with the KLD
maxima. At convective scales for W , the ensemble spread
maxima (Fig. 2e; red contours) are not necessarily collo-

Nonlin. Processes Geophys., 28, 615–626, 2021 https://doi.org/10.5194/npg-28-615-2021



J. Ruiz et al.: Reduced non-Gaussianity in convective-scale NWP 619

Figure 2. (a–h) South–north vertical cross section along the black line indicated in Fig. 1b–d at 05:30 UTC for (a–d) first-guess ensemble
mean reflectivity (Z; shades; dBZ) and vertical velocity (W ; contours every 2.5 m s−1). (e–h) Vertical velocity KLD (shades; 10−2) and
ensemble spread (red contours at 1.0, 2.5, 5.0, and 10.0 m s−1). (i–l) Temperature KLD (shades; 10−2) and ensemble spread (red contours at
0.2, 0.5, 1.0, and 2.0 K). Blacked dashed contours indicate reflectivity over 30 dBZ. The black cross in panels (i)–(l) indicates the location of
the maximum KLD within the grid points at which Z > 30 dBZ.

cated. For example, larger departures from the Gaussian are
found above the ensemble spread maximum associated with
the main updraft in the 5MIN experiment. For temperature,
there is also no clear relation in the distribution of the en-
semble spread and the KLD, although KLD maxima seem
to occur within areas of a relatively large ensemble spread.
As the assimilation frequency increases, it is more difficult
to find a relationship between KLD and ensemble spread for
either W or T (Fig. 2; second and third rows).

KLD forW and T are consistently reduced with more fre-
quent DA (Fig. 2e–h), although the reduction is smaller for
T . Overall, KLD is reduced more from 5MIN to 2MIN than
from 1MIN to 30SEC. This reduction occurs mainly within
the convective clouds. Non-Gaussianity in W at low levels
observed outside the cloud is not significantly affected by
more frequent updates. The ensemble spread for W is also
reduced with more frequent DA and indicates a narrower er-
ror distribution. This result is linked with the reduced non-
Gaussianity since it is expected that smaller perturbations
grow in a more linear regime and contribute to reducing the
departures from the Gaussian.

To better investigate the shape of the error distributions
and how they are affected by the update frequency, Fig. 3
shows the sample histograms for the first guess at the lo-
cation of maximum KLD (indicated with a black cross in
Fig. 2). We restrict the search of the maximum KLD to the
grid points at which the ensemble mean reflectivity is over
30 dBZ, where radar data impact would be large. The fore-
cast error distribution for W and for the 5MIN experiment
shows large departures from the Gaussian with a strong pos-
itive tail (Fig. 3a). A similar situation is observed for Z
(Fig. 3e). This result is consistent since ensemble members
with larger W are probably associated with larger reflectiv-
ity values, so both distributions become positively skewed.
As the update frequency is increased, non-Gaussianity and
ensemble spread are reduced for both variables. The only ex-
ception is that Z at 30SEC update frequency shows a KLD
value that is slightly larger than that in the 1MIN experiment.
Note that these error distributions are taken at slightly differ-
ent locations based on the simulated convection locations in
each experiment, and thus, the mean of the distribution can
change from one experiment to the other.
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Figure 3. Sample histograms for (a–d) vertical velocity (m s−1 –
meters per second) and (e–h) reflectivity (dBZ) at the location of the
maximum KLD for vertical velocity (black cross in Fig. 2). Thick
dashed curves indicate fitted Gaussian functions, and KLD non-
Gaussian measures are also indicated. Each column corresponds to
5MIN, 2MIN, 1MIN, and 30SEC from left to right, respectively.

4D EnKF experiments allow us to investigate the impact of
changing the assimilation frequency while keeping the ob-
servation number unchanged. 5MIN-4D shows weaker up-
drafts (similar to those found in 5MIN) compared with ex-
periments with more frequent updates (Fig. 4a, b). 5MIN-4D
also shows almost the same ensemble spread forW and T as
5MIN (Fig. 4c and e; red contours). KLD for W (Fig. 4c;
shading) is lower, indicating that the observation number
contributes to reducing non-Gaussianity. This is not the case
for T for which KLD is similar or larger (Fig. 4e; shading).
1MIN-4D is close to 1MIN and 30SEC in terms of non-
Gaussianity and the shape and strength of the convective cell
(Fig. 4b, d and f).

3.2 Spatiotemporal distribution of non-Gaussianity

We further investigate the non-Gaussianity by averaging the
KLD vertically and temporally (Fig. 5). In 5MIN, the cen-
tral and eastern sides of the convective area show relatively
low KLD values because the impact of radar DA is gener-
ally bigger in the convective areas (Fig. 5a). The impact of
DA frequency on non-Gaussianity is investigated by means
of the relative KLD difference between the 5MIN and all the
other experiments, which is computed as follows:

KLDdiff =
KLDE−KLD5MIN

KLD5MIN
, (3)

where KLDdiff is the relative difference between the averaged
KLD in the 5MIN experiment (KLD5MIN) and on each of the
other experiments (KLDE), whereE can be either 5MIN-4D,
2MIN, 1MIN, 1MIN-4D or 30SEC).

KLD consistently decreases with increasing DA frequency
(Fig. 5b–d). KLD is reduced by up to 40 % in 30SEC with

Figure 4. As in Fig. 2 but for (a, c, e) 5MIN-4D and (b, d, f) 1MIN-
4D.

respect to the 5MIN. KLD is reduced more in the convective
area, where more observations are assimilated. Increasing the
DA frequency and the observation number produces a more
substantial impact over the western part of the convective line
where KLD maxima are found associated with convective
cells entering the radar range from the west.

KLD in 1MIN-4D is as low as that in 30SEC and lower
than that in 1MIN. This result suggests that both observa-
tion number and DA frequency contribute to reducing non-
Gaussianity, at least for high DA frequencies. KLD in 5MIN-
4D is lower than that in 5MIN, so that a larger observation
number helps to reduce non-Gaussianity. However, KLD in
5MIN-4D is larger than that in 30SEC or 1MIN-4D, indicat-
ing that the DA frequency is equally important. Moreover,
the impact of DA frequency can be larger in the case of vari-
ables like T and moisture. As already found in the vertical
cross sections (Fig. 4), for those variables, KLD in 5MIN and
5MIN-4D is almost the same, while KLD is clearly reduced
for 1MIN, 1MIN-4D, and 30SEC (not shown).

We also investigate the vertical distribution of non-
Gaussianity by the spatially averaged vertical profile of
KLD at “precipitating” grid points, defined by the ensem-
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Figure 5. (a) Column-averaged KLD for zonal wind for 5MIN, averaged for the experiment period from 05:00 to 06:00 UTC. Relative KLD
difference (percent) from 5MIN for (b) 2MIN, (c) 1MIN, (d) 30SEC, (e) 5MIN-4D, and (f) 1MIN-4D. Warm colors correspond to smaller
KLD values.

ble mean column maximum reflectivity> 30 dBZ, and “non-
precipitating” grid points, defined by the ensemble mean col-
umn maximum reflectivity< 0 dBZ. At the precipitating grid
points (Fig. 6a–d), KLD, for temperature and vertical ve-
locity, is maximum at mid levels coinciding with the max-
imum in latent heat release within convective clouds and
with the maximum ensemble spread for these two variables
(not shown). KLD or temperature, vertical velocity, and spe-
cific humidity maximizes at lower heights over the non-
precipitating area, since, as stated before, at such locations
non-Gaussianity is mainly associated with shallow convec-
tion. For instance, for the vertical velocity, the ensemble
spread in the shallow convection is usually low, but the KLD
can be larger. An upper-level maximum in KLD is found for
the meridional wind (Fig. 6d and h), which also coincides
with the maximum ensemble spread (not shown). Convec-
tive outflows are stronger at the top of convective clouds and
can be one of the mechanisms contributing to the increase
in non-Gaussianity at these levels over the precipitating area.
Overall, KLD in 30SEC is lower than that in 5MIN with re-
ductions of more than 40 %. The reduction in KLD in the
non-precipitating area is smaller because the radar DA is in-
herently less effective in these areas (Fig. 6e–h). There are
some exceptions to the general reduction in non-Gaussianity
with increased update frequency. Specific humidity in non-
precipitating grid points shows larger KLD in the 30SEC
than in the 5MIN experiments. This is also the case for the
precipitating grid points at upper levels in the second half of
the experiment. Also, the KLD in W in the non-precipitating
grid points at middle and upper levels is slightly larger in the
30SEC experiment.

3.3 Non-Gaussianity evolution within the DA cycle

To investigate the effect of the analysis update on non-
Gaussianity, we present the time series of the KLD of the
analysis and first guess vertically and horizontally aver-
aged over the precipitating and non-precipitating grid points
(Fig. 7). At most times and variables over the precipitating
and non-precipitating grid points, KLD is reduced during the
assimilation step. Experiments with longer windows show
more KLD growth during the forecast as expected but also
a larger reduction at the analysis step, which is not as ef-
fective as the more frequent updates in reducing the anal-
ysis KLD. As noted before, the specific humidity over the
non-precipitating grid points behaves differently, and KLD
increases during the assimilation step for almost all times
and experiments, leading to larger KLD at shorter assimi-
lation windows (Fig. 6b and f). In this area, mostly non-
precipitating observations are assimilated to suppress spuri-
ous clouds. Interestingly, in the non-precipitating grid points,
5MIN-4D is the experiment providing the lowest KLD for all
variables (Fig. 7b, d, and f). This result suggests the poten-
tial benefits of treating non-precipitating observations differ-
ently.

To evaluate the impact of assimilation frequency on the
distance between the analysis and first guess to the observa-
tions in a more systematic way, we compute the root mean
squared error (RMSE) and bias for reflectivity observations
(Fig. 8). The computation of the RMSE and bias between the
model and the observations is done by comparing the column
maximum of the reflectivity for each horizontal grid location
and time. The RMSE and bias are computed only over grid
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Figure 6. Time vertical cross section of KLD for 5MIN (contours; 10−2) and the relative difference for 30SEC (shaded), averaged over
the (a–d) precipitating (> 30 dBZ) and (e–h) non-precipitating (< 0 dBZ) grid points for (a, e) temperature, (b, f) specific humidity, (c, g)
vertical velocity, and (d, h) meridional wind.

points at which the observed maximum reflectivity is over
5 dBZ. The time series of RMSE shows a better fit to the
observed reflectivity for shorter assimilation windows. The
impact of 4D DA is not so clear; 1MIN-4D slightly outper-
forms the 1MIN, but 5MIN-4D and 5MIN perform similarly
(Fig. 8a). This is partially because in 4D data assimilation
the analysis results from the assimilation of all the observa-
tions within the assimilation window, while, to construct this
figure, only the observations at the analysis time were con-
sidered. The bias, computed as the mean difference between
the model and the observations does not seem to be consis-
tently affected by the assimilation frequency (Fig. 8b). These
results are in agreement with those observed in the time se-
ries of KLD for different variables. However, we should be
cautious with the interpretation of these results since increas-
ing the observation number can lead to both a reduced KLD
and a better fit to the observed quantities, which does not
necessarily imply a causal link between these two effects.

4 Summary and discussion

We performed 1000-member 1 km resolution ensemble DA
experiments using real phased array radar observations and
a mesoscale NWP model to investigate the impact of DA
frequency and observation number on the non-Gaussian er-
ror distributions. We found that a DA frequency of 5 min,
although it was already much faster than the typical DA fre-
quency, resulted in strong non-Gaussianity possibly affecting
the performance of the EnKF. Non-Gaussianity is stronger

for vertical velocity, as has been found by Kawabata and
Ueno (2020). Non-Gaussianity is also larger at mid levels
within convective cells, near the level of larger latent heat
release and vertical accelerations associated with convective
instability. At convective scales, some of the local maxima in
KLD can be related directly to advection by mesoscale circu-
lations associated with strong convective cells, but other pro-
cesses not specifically presented in this study may also pos-
sibly contribute to the generation of non-Gaussianity, such
as those not directly associated with clouds, like differential
heating circulations or gravity waves.

We found that increasing the analysis update frequency
and observation number from 5 min to 30 s has a huge impact
upon non-Gaussianity in the error distributions for all model
variables but particularly for vertical velocity and reflectiv-
ity, which are the ones showing larger KLD from Gaussian-
ity at these scales. Increasing the assimilation frequency to
30 s and assimilating more observations can reduce KLD by
up to 40 %. Moreover, 4D EnKF experiments revealed that,
for frequent DA of every 1 min, the observation number ex-
plained most of the reduction in non-Gaussianity; in contrast,
for a longer window of 5 min, even the experiments using
all 30 s frequency observations present significant departures
from the Gaussian. While convective clouds are particularly
favorable for nonlinear error growth, non-Gaussianity is not
necessarily larger within convective clouds. This is mainly
due to the convective-scale radar that DA is usually most ef-
fective within precipitating clouds.

There are two possible ways in which more frequent DA
can result in error distributions closer to the Gaussian. First,
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Figure 7. Sawtooth time series of the KLD (10−2) of the analysis
and first guess vertically and horizontally averaged over the precip-
itating (> 30 dBZ; a, c, e) and non-precipitating (< 0 dBZ; b, d, f)
grid points for temperature (a, b), specific humidity (c, d), and ver-
tical velocity (e, f) and for the 5MIN (red), 5MIN-4D (blue), 2MIN
(green), 1MIN (magenta), 1MIN-4D (black), and 30SEC (cyan) ex-
periments.

Figure 8. Sawtooth time series of the root mean squared error
(dBZ; a) and bias (dBZ; b) of the maximum reflectivity of the anal-
ysis and first guess for the 5MIN (red), 5MIN-4D (blue), 2MIN
(green), 1MIN (magenta), 1MIN-4D (black), and 30SEC (cyan) ex-
periments.

more frequent DA contributes to a quasi-linear evolution of
the forecast error due to forecast lengths which are shorter
than the predictability limit for the resolved scales. This also
helps to keep the perturbation small and can, additionally,
contribute to quasi-linear perturbation dynamics. Second, our
results show that the analysis step effectively contributes to
reducing non-Gaussianity for different variables, although
this may not be the case for non-precipitating reflectivity ob-
servations that produce an increase in KLD for specific hu-
midity. Non-Gaussianity reduction during DA is larger with
longer windows. However, it is not enough to compensate for
the effect of more rapid and nonlinear error growth during the
forecast step in the lower update frequency experiments.

From the point of view of KLD reduction, the largest im-
pact is found between 5MIN and 2MIN updates. This sug-
gests that nonlinear error growth becomes more important
after the first 2 min of integration at these scales. This hy-
pothesis is partially supported by the reduction in RMSE and
ensemble spread. A 2 min update frequency seems to pro-
vide a good compromise between the computational cost and
non-Gaussianity of the error distributions. However, from
the point of view of the analysis accuracy, more frequent
DA provides a better fit to the observed quantities. The spe-
cific role of reduced non-Gaussianity on this is not clear and
should be further investigated. Gaussian error distributions
may contribute to more accurate analysis updates, but in the
current experimental setting, other factors like the increase
in the number of assimilated observations may also lead to
the reduction in the RMSE for observed quantities. Mae-
jima and Miyoshi (2020) investigated the impact of assim-
ilation frequency at 1 km using observing system simulation
experiments. They also found a significant improvement in
the forecast quality when the assimilation window is reduced
from 5 to 3 min and additional improvements using 1 min
windows. These results are consistent with what is found in
this paper with respect to Gaussianity in the error distribu-
tions.

Moreover, as has been shown in the previous studies, more
frequent assimilation can produce a larger degree of imbal-
ance in the initial conditions which can degrade the quality of
the forecasts (e.g., Lange and Craig, 2014; Bick et al., 2016).
Therefore, despite the potential benefits of a more Gaussian
model error distribution on the analysis accuracy, other fac-
tors may degrade the forecasts initialized from more frequent
data assimilation cycles. Imbalance may also be an additional
source of non-Gaussianity. Gaussian error distributions can
lead to more physically meaningful assimilation updates in
the context of an EnKF and, therefore, more balanced initial
conditions. However, a larger imbalance in the initial con-
ditions can contribute to faster error growth and increased
departure from the Gaussian in the forecast distribution. Pos-
sible interactions of these mechanisms in a data assimilation
cycle have not been investigated and are a subject for fu-
ture research. Our results suggest that, despite the effect of a
larger imbalance, the increase in DA frequency reduces non-
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Gaussianity in the sample distributions with the EnKF. This
is even true of variables like vertical velocity within convec-
tive clouds which are frequently used to measure the effect
of imbalance in the initial conditions.

This study is the first attempt to investigate the impact
of assimilation frequency and observation number on non-
Gaussianity using an EnKF employing a large 1000-member
ensemble and every 30 s observations from a PAWR. In this
first set of experiments, we evaluate the impact on the non-
Gaussianity of the ensemble-based sample distribution. Fu-
ture experiments will be performed to investigate the overall
quality of the analysis obtained with different assimilation
windows and the number of observations and also the im-
pact of the assimilation window on the structure of the error
covariance matrix.
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