Articles | Volume 28, issue 3
https://doi.org/10.5194/npg-28-347-2021
https://doi.org/10.5194/npg-28-347-2021
Research article
 | 
30 Jul 2021
Research article |  | 30 Jul 2021

Producing realistic climate data with generative adversarial networks

Camille Besombes, Olivier Pannekoucke, Corentin Lapeyre, Benjamin Sanderson, and Olivier Thual

Related authors

Normalizing the permafrost carbon feedback contribution to the Transient Climate Response to Cumulative Carbon Emissions and the Zero Emissions Commitment
Norman J. Steinert and Benjamin M. Sanderson
Earth Syst. Dynam., 16, 1711–1721, https://doi.org/10.5194/esd-16-1711-2025,https://doi.org/10.5194/esd-16-1711-2025, 2025
Short summary
An evolving Coupled Model Intercomparison Project phase 7 (CMIP7) and Fast Track in support of future climate assessment
John P. Dunne, Helene T. Hewitt, Julie M. Arblaster, Frédéric Bonou, Olivier Boucher, Tereza Cavazos, Beth Dingley, Paul J. Durack, Birgit Hassler, Martin Juckes, Tomoki Miyakawa, Matt Mizielinski, Vaishali Naik, Zebedee Nicholls, Eleanor O'Rourke, Robert Pincus, Benjamin M. Sanderson, Isla R. Simpson, and Karl E. Taylor
Geosci. Model Dev., 18, 6671–6700, https://doi.org/10.5194/gmd-18-6671-2025,https://doi.org/10.5194/gmd-18-6671-2025, 2025
Short summary
The TIPMIP Earth system model experiment protocol: phase 1
Colin Jones, Isaline Bossert, Donovan P. Dennis, Hazel Jeffery, Chris D. Jones, Torben Koenigk, Sina Loriani, Benjamin Sanderson, Roland Séférian, Klaus Wyser, Shuting Yang, Manabu Abe, Sebastian Bathiany, Pascale Braconnot, Victor Brovkin, Friedrich A. Burger, Patrica Cadule, Frederic S. Castruccio, Gokhan Danabasoglu, Andrea Dittus, Jonathan F. Donges, Friederike Fröb, Thomas Frölicher, Goran Georgievski, Chuncheng Guo, Aixue Hu, Peter Lawrence, Paul Lerner, José Licón-Saláiz, Bette Otto-Bliesner, Anastasia Romanou, Elena Shevliakova, Yona Silvy, Didier Swingedouw, Jerry Tjiputra, Jeremy Walton, Andy Wiltshire, Ricarda Winkelmann, Richard Wood, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2025-3604,https://doi.org/10.5194/egusphere-2025-3604, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Opinion: The importance and future development of perturbed parameter ensembles in climate and atmospheric science
Ken S. Carslaw, Leighton A. Regayre, Ulrike Proske, Andrew Gettelman, David M. H. Sexton, Yun Qian, Lauren Marshall, Oliver Wild, Marcus van Lier-Walqui, Annika Oertel, Saloua Peatier, Ben Yang, Jill S. Johnson, Sihan Li, Daniel T. McCoy, Benjamin M. Sanderson, Christina J. Williamson, Gregory S. Elsaesser, Kuniko Yamazaki, and Ben B. B. Booth
EGUsphere, https://doi.org/10.5194/egusphere-2025-4341,https://doi.org/10.5194/egusphere-2025-4341, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
flat10MIP: an emissions-driven experiment to diagnose the climate response to positive, zero and negative CO2 emissions
Benjamin M. Sanderson, Victor Brovkin, Rosie A. Fisher, David Hohn, Tatiana Ilyina, Chris D. Jones, Torben Koenigk, Charles Koven, Hongmei Li, David M. Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew H. MacDougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Séférian, Lori T. Sentman, Isla R. Simpson, Chris Smith, Norman J. Steinert, Abigail L. S. Swann, Jerry Tjiputra, and Tilo Ziehn
Geosci. Model Dev., 18, 5699–5724, https://doi.org/10.5194/gmd-18-5699-2025,https://doi.org/10.5194/gmd-18-5699-2025, 2025
Short summary

Cited articles

Arjovsky, M., Chintala, S., and Bottou, L.: Wasserstein gan, arXiv [preprint], arXiv:1701.07875, 26 January 2017. a, b, c, d, e, f
Besombes, C.: Producing realistic climate data with GANs, Zenodo [data set], https://doi.org/10.5281/zenodo.4442450, 2021 (data available at: https://github.com/Cam-B04/Producing-realistic-climate-data-with-GANs.git, last access: January 2021). a
Beusch, L., Gudmundsson, L., and Seneviratne, S. I.: Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land, Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020, 2020. a
Boukabara, S.-A., Krasnopolsky, V., Stewart, J. Q., Maddy, E. S., Shahroudi, N., and Hoffman, R. N.: Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges, B. Am. Meteorol. Soc., 100, ES473–ES491, 2019. a
Chan, S. and Elsheikh, A. H.: Parametric generation of conditional geological realizations using generative neural networks, Computat. Geosci., 23, 925–952, https://doi.org/10.1007/s10596-019-09850-7, 2019. a
Download
Short summary
This paper investigates the potential of a type of deep generative neural network to produce realistic weather situations when trained from the climate of a general circulation model. The generator represents the climate in a compact latent space. It is able to reproduce many aspects of the targeted multivariate distribution. Some properties of our method open new perspectives such as the exploration of the extremes close to a given state or how to connect two realistic weather states.
Share