Articles | Volume 28, issue 3
Nonlin. Processes Geophys., 28, 347–370, 2021
https://doi.org/10.5194/npg-28-347-2021
Nonlin. Processes Geophys., 28, 347–370, 2021
https://doi.org/10.5194/npg-28-347-2021
Research article
30 Jul 2021
Research article | 30 Jul 2021

Producing realistic climate data with generative adversarial networks

Camille Besombes et al.

Related authors

The potential for structural errors in emergent constraints
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021,https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021,https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5
Katherine Dagon, Benjamin M. Sanderson, Rosie A. Fisher, and David M. Lawrence
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 223–244, https://doi.org/10.5194/ascmo-6-223-2020,https://doi.org/10.5194/ascmo-6-223-2020, 2020
Short summary
Relating climate sensitivity indices to projection uncertainty
Benjamin Sanderson
Earth Syst. Dynam., 11, 721–735, https://doi.org/10.5194/esd-11-721-2020,https://doi.org/10.5194/esd-11-721-2020, 2020
Short summary
The role of prior assumptions in carbon budget calculations
Benjamin Sanderson
Earth Syst. Dynam., 11, 563–577, https://doi.org/10.5194/esd-11-563-2020,https://doi.org/10.5194/esd-11-563-2020, 2020
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022,https://doi.org/10.5194/npg-29-301-2022, 2022
Short summary
Predicting sea surface temperatures with coupled reservoir computers
Benjamin Walleshauser and Erik Bollt
Nonlin. Processes Geophys., 29, 255–264, https://doi.org/10.5194/npg-29-255-2022,https://doi.org/10.5194/npg-29-255-2022, 2022
Short summary
Using neural networks to improve simulations in the gray zone
Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, and George Craig
Nonlin. Processes Geophys., 29, 171–181, https://doi.org/10.5194/npg-29-171-2022,https://doi.org/10.5194/npg-29-171-2022, 2022
Short summary
The blessing of dimensionality for the analysis of climate data
Bo Christiansen
Nonlin. Processes Geophys., 28, 409–422, https://doi.org/10.5194/npg-28-409-2021,https://doi.org/10.5194/npg-28-409-2021, 2021
Short summary
Identification of droughts and heatwaves in Germany with regional climate networks
Gerd Schädler and Marcus Breil
Nonlin. Processes Geophys., 28, 231–245, https://doi.org/10.5194/npg-28-231-2021,https://doi.org/10.5194/npg-28-231-2021, 2021
Short summary

Cited articles

Arjovsky, M., Chintala, S., and Bottou, L.: Wasserstein gan, arXiv [preprint], arXiv:1701.07875, 26 January 2017. a, b, c, d, e, f
Besombes, C.: Producing realistic climate data with GANs, Zenodo [data set], https://doi.org/10.5281/zenodo.4442450, 2021 (data available at: https://github.com/Cam-B04/Producing-realistic-climate-data-with-GANs.git, last access: January 2021). a
Beusch, L., Gudmundsson, L., and Seneviratne, S. I.: Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land, Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020, 2020. a
Boukabara, S.-A., Krasnopolsky, V., Stewart, J. Q., Maddy, E. S., Shahroudi, N., and Hoffman, R. N.: Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges, B. Am. Meteorol. Soc., 100, ES473–ES491, 2019. a
Chan, S. and Elsheikh, A. H.: Parametric generation of conditional geological realizations using generative neural networks, Computat. Geosci., 23, 925–952, https://doi.org/10.1007/s10596-019-09850-7, 2019. a
Download
Short summary
This paper investigates the potential of a type of deep generative neural network to produce realistic weather situations when trained from the climate of a general circulation model. The generator represents the climate in a compact latent space. It is able to reproduce many aspects of the targeted multivariate distribution. Some properties of our method open new perspectives such as the exploration of the extremes close to a given state or how to connect two realistic weather states.