Articles | Volume 32, issue 2
https://doi.org/10.5194/npg-32-201-2025
https://doi.org/10.5194/npg-32-201-2025
Research article
 | 
01 Jul 2025
Research article |  | 01 Jul 2025

Explaining the high skill of reservoir computing methods in El Niño prediction

Francesco Guardamagna, Claudia Wieners, and Henk A. Dijkstra

Related authors

Physical characterization of the boundary separating safe and unsafe AMOC overshoot behavior
Aurora Faure Ragani and Henk A. Dijkstra
Earth Syst. Dynam., 16, 1287–1301, https://doi.org/10.5194/esd-16-1287-2025,https://doi.org/10.5194/esd-16-1287-2025, 2025
Short summary
Physics of AMOC multistable regime shifts due to freshwater biases in an EMIC
Amber A. Boot and Henk A. Dijkstra
Earth Syst. Dynam., 16, 1221–1235, https://doi.org/10.5194/esd-16-1221-2025,https://doi.org/10.5194/esd-16-1221-2025, 2025
Short summary
The interaction of solar radiation modification with Earth system tipping elements
Gideon Futerman, Mira Adhikari, Alistair Duffey, Yuanchao Fan, Jessica Gurevitch, Peter Irvine, and Claudia Wieners
Earth Syst. Dynam., 16, 939–978, https://doi.org/10.5194/esd-16-939-2025,https://doi.org/10.5194/esd-16-939-2025, 2025
Short summary
A computationally efficient method to model Stratospheric Aerosol Injection experiments
Jasper de Jong, Daniel Pflüger, Simone Lingbeek, Claudia E. Wieners, Michiel L. J. Baatsen, and René R. Wijngaard
EGUsphere, https://doi.org/10.22541/essoar.174273333.31930996/v1,https://doi.org/10.22541/essoar.174273333.31930996/v1, 2025
Short summary
Causal Mechanisms of Subpolar Gyre Variability in CMIP6 Models
Swinda K. J. Falkena, Henk A. Dijkstra, and Anna S. von der Heydt
EGUsphere, https://doi.org/10.48550/arXiv.2408.16541,https://doi.org/10.48550/arXiv.2408.16541, 2025
Short summary

Cited articles

Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S., and DeWitt, D. G.: Skill of Real-Time Seasonal ENSO Model Predictions during 2002–11: Is Our Capability Increasing?, B. Am. Meteorol. Soc., 93, 631–651, 2012. a
Battisti, D. S. and Hirst, A. C.: Interannual Variability in a Tropical Atmosphere-Ocean Model: Influence of the Basic State, Ocean Geometry and Nonlinearity, J. Atmos. Sci., 46, 1687–1712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2, 1989. a
Bracco, A., Brajard, J., Dijkstra, H. A., Hassanzadeh, P., Lessig, C., and Monteleoni, C.: Machine Learning for the Physics of Climate, Nature Reviews Physics, 7, 6–20, https://doi.org/10.1038/s42254-024-00776-3, 2024. a
Copernicus Climate Change Service: ORAS5 global ocean reanalysis monthly data from 1958 to present, 2021. a, b
Duan, W. and Wei, C.: The “spring predictability barrier” for ENSO predictions and its possible mechanism: Results from a fully coupled model, Int. J. Climatol., 33, 1280–1292, https://doi.org/10.1002/joc.3513, 2013. a
Download
Short summary
Artificial intelligence (AI) has recently shown promising results in ENSO (El Niño–Southern Oscillation) forecasting, outperforming traditional models. Yet AI models deliver accurate predictions without showing the underlying mechanisms. Our study examines a specific AI model, the reservoir computer (RC). Our results show that the RC is less sensitive to initial perturbations than the traditional Zebiak–Cane (ZC) model. This reduced sensitivity can explain the RC's superior skills.
Share