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Abstract. Accurate prediction of the extreme phases of the El Niño–Southern Oscillation (ENSO) is important
to mitigate the socioeconomic impacts of this phenomenon. It has long been thought that prediction skill was
limited to a 6-month lead time. However, machine learning methods have shown to have skill at lead times of
up to 21 months. In this paper, we aim to explain for one class of such methods, i.e. reservoir computers (RCs),
the origin of this high skill. Using a conditional nonlinear optimal perturbation (CNOP) approach, we compare
the initial error propagation in a deterministic Zebiak–Cane (ZC) ENSO model and that in an RC trained on
synthetic observations derived from a stochastic ZC model. Optimal initial perturbations at long lead times in the
RC involve both sea surface temperature and thermocline anomalies, which leads to decreased error propagation
compared to the ZC model, where mainly thermocline anomalies dominate the optimal initial perturbations. This
reduced error propagation allows the RC to provide a higher skill at long lead times than the deterministic ZC
model.

1 Introduction

The El Niño–Southern Oscillation (ENSO) phenomenon,
driven by ocean–atmosphere interactions in the tropical Pa-
cific, is one of the biggest sources of interannual climate
variability (Neelin et al., 1998). The full ENSO cycle shows
an irregular period of 2–7 years. During its warm (El Niño)
and cold (La Niña) phases, ENSO strongly affects the cli-
mate all over the globe through well-known teleconnections
(McPhaden et al., 2006), increasing the incidence of extreme
weather events such as global droughts (Yin et al., 2022) and
tropical cyclones (Wang et al., 2010). ENSO can therefore
have a substantial impact on the worldwide economy (Liu et
al., 2023a), and accurate and reliable forecasts are necessary
to mitigate its socioeconomic consequences.

For this reason, ENSO modelling and forecasting have
been a central topic of extensive research, which, thanks to
the contribution of the Tropical Ocean–Global Atmosphere
programme, led to the development of a complete hierarchy
of models. This hierarchy includes conceptual models (Jin,

1997; Suarez and Schopf, 1988; Takahashi et al., 2019; Tim-
mermann et al., 2003), intermediate complexity models (Ze-
biak and Cane, 1987; Battisti and Hirst, 1989), and global
climate models (Planton et al., 2021). Many of these classi-
cal dynamical models can reasonably forecast ENSO for up
to a lead time of 6 months, with a correlation between predic-
tions and observations larger than 0.5 (Barnston et al., 2012),
but their skill rapidly decreases for longer lead times.

In recent years, the application of machine learning (ML)
techniques for predicting ENSO has significantly advanced
(Bracco et al., 2024). Ham et al. (2019) showed that con-
volutional neural networks (CNNs) trained with CMIP5 and
reanalysis data could obtain reasonable skill at lead times of
up to about 17 months. Hu et al. (2021) advanced the CNN
approach by integrating dropout and transfer learning with
a residual CNN, obtaining a good performance for a lead
time of up to 21 months. Long short-term memory (LSTM)
networks, able to exploit the temporal dynamics present in
the training data, have also been successfully applied to
ENSO forecasting (Xiaoqun et al., 2020). More recent stud-
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ies have combined LSTMs with other methods such as graph
neural networks (Jonnalagadda and Hashemi, 2023), CNNs
(Mahesh et al., 2019) and autoencoders (Jonnalagadda and
Hashemi, 2023) to create hybrid models boosting the per-
formance as they are able to capture both the spatial and
the temporal dynamics present in the data. Reservoir com-
puter (RC) methods, a special class of recurrent neural net-
works (RNNs), have shown optimal performance in pre-
dicting ENSO (Hassanibesheli et al., 2022). The RC offers
a good balance between performance and model simplic-
ity, which enhances explainability and facilitates analysis of
model predictions. Moreover, like other RNN-based models,
the RC offers the possibility of generating a self-evolving
system that does not rely on external inputs (Guardamagna
et al., 2024). This characteristic is crucial to understanding
the internal dynamics of the RC and the evolution of errors
over time during forecasting.

All these new tools provide more accurate forecasting
skills than classical dynamical models, especially for longer
lead times, and seem to be able to circumvent the spring pre-
dictability barrier (SPB). The SPB (Webster and Yang, 1992;
Lau and Yang, 1996) has been identified and documented
across all of ENSO’s dynamical model hierarchy from con-
ceptual models (Jin and Liu, 2021a, b; Jin et al., 2021)
to comprehensive general circulation models (GCMs; Duan
and Wei, 2013). In particular, in the intermediate-complexity
Zebiak–Cane (ZC) model (Zebiak and Cane, 1987), the SPB
has been rigorously studied and quantified using the con-
ditional nonlinear optimal perturbation (CNOP) framework
(Mu et al., 2007). This tool has been applied to investigate the
sensitivity of the ZC model to both initial conditions (Duan
et al., 2013) and model parameters (Yu et al., 2014) uncer-
tainties. Thus, the ZC model is an excellent test bed to anal-
yse why ML algorithms can have skill beyond the SPB, pro-
viding good predictions even when initialized during boreal
spring.

In this paper, we aim to explain the good performance of
RC methods in ENSO prediction. Specifically, we compare
the evolution of optimal initial perturbations, determined us-
ing the CNOP approach, between the RC (trained with syn-
thetic observations from the stochastic ZC model) and the
deterministic ZC model. In Sect. 2, we shortly describe the
ZC model and the CNOP technique, focusing on the changes
introduced to adapt them to our analysis; in addition, the RC
approach is briefly presented. In Sect. 3, we first assess the
performance of the RC and then present results of the CNOP
analysis for both the RC approach and the ZC model. A sum-
mary and discussion of the results follow in Sect. 4.

2 Models and methods

2.1 Zebiak–Cane (ZC) model

The ZC model is an intermediate-complexity ENSO model
that describes the evolution of anomalies with respect to

a prescribed seasonal mean climatological state across the
tropical Pacific. The state vector of this model consists
of two-dimensional fields of sea surface temperature, ther-
mocline depth, oceanic and atmospheric velocities, and at-
mospheric geopotential. For a complete description of the
model’s components and equations, we refer the reader to Ze-
biak and Cane (1987). We use both the original deterministic
ZC model and a stochastic ZC model following the approach
described in Roulston and Neelin (2000). In this stochastic
version, only noise in the zonal wind-stress field is applied as
follows. First, a linear regression (LR) model relating sea sur-
face temperature (SST) anomalies and surface zonal wind-
stress anomalies was constructed empirically from observa-
tions using the ORAS5 dataset (Copernicus Climate Change
Service, 2021) over the period between 1961 and 1991 with
a time step of 10 d (corresponding to the ZC model time
step). Next, the variability explained by this linear model
was subtracted from the total zonal wind-stress field to ob-
tain the residual zonal wind-stress anomalies. The first em-
pirical orthogonal function (EOF) of this residual (Fig. A1
in Appendix A) shows a strong component over the eastern
Pacific. In Feng and Dijkstra (2017), the first two EOFs were
included, where the second EOF captures the westerly wind
bursts, but to keep the spatial noise structure simple, we only
included the first EOF. Finally, the principal component (PC)
related to the first EOF was fitted to a first-order autoregres-
sive model:

xt+1 = axt + bεt , (1)

where εt is a white noise term following a Gaussian distribu-
tion with a zero mean and unit variance (εt ∼N (0,1)), while
a and b are the fitted parameters. This fitted first-order au-
toregressive model was used during integration to generate a
different (random) zonal wind-stress anomaly pattern at each
time step.

There is still a debate on whether the Pacific climate
state is in a subcritical or supercritical regime (Kessler,
2002; Guardamagna et al., 2024). This distinction hinges on
whether ENSO variability is a damped oscillation excited
by stochastic forcing (subcritical) or occurs as a sustained
oscillation or limit cycle (supercritical). In the supercritical
case, ENSO behaviour is strongly influenced by nonlineari-
ties, which arise from three main sources in the ZC model:
heat advection, wind-stress anomalies, and subsurface water
temperature variations (Duan et al., 2013). Given this ongo-
ing debate, we study both regimes here, which can be easily
distinguished in the ZC model by varying a single parame-
ter. Following Tziperman et al. (1994), we use a parameter
rd in the drag coefficient Cd = rdC

0
d , where C0

d is the stan-
dard value in the ZC model. Given the zonal and meridional
wind velocities ua = (ua,va), the ZC model computes the
wind stress (τx,τy) acting on the ocean surface according to
the following bulk formula:

(τx,τy)= ρairrdC
0
d |ua|(ua,va), (2)
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where ρair is the air density and rd = 1 is the original model
configuration (Zebiak and Cane, 1987). With increasing rd,
the ZC model generates a larger wind-stress response to
sea surface temperature anomalies, intensifying the coupling
strength between ocean and atmosphere.

In the deterministic version of the ZC model, an initial
anomaly on the seasonal background state rapidly decays
for rd = 0.79. In contrast, for rd = 0.8, ENSO variability oc-
curs as a periodic solution with a ∼ 4-year period (Fig. A2).
Hence, the Hopf bifurcation bounding the two regimes is
located between rd = 0.79 and rd = 0.8; here, we choose
rd = 0.77 as a value in the subcritical regime and rd = 0.9
in the supercritical regime. When noise is introduced, the ZC
model’s ENSO is phase-locked in the winter season (Fig. A3)
for both rd = 0.77 and rd = 0.9. The SPB is identified with
the initial month corresponding to the fastest decrease in au-
tocorrelation in eastern Pacific SST anomalies (Jin and Liu,
2021a). According to this definition, the ZC model shows a
clear SPB in May for both rd = 0.77 and rd = 0.9 (Fig. A4).
All these aspects make the ZC model a good test bed for un-
derstanding why the RC can circumvent the SPB in both the
subcritical and supercritical regime.

2.2 Reservoir computer

Although the procedure to generate an RC has been well
described elsewhere (Pathak et al., 2018), we briefly sum-
marize the approach here, while also introducing our nota-
tion. Given an input signal u(n) ∈ RNu ,n= 1, . . .,Nt, where
Nt is the total number of time steps, and a given output sig-
nal ytarget(n) ∈ RNy , the RC has to learn how to estimate an
output signal y(n) ∈ RNy as similar as possible to ytarget(n).
To do that during the training procedure, an error measure
E(y,ytarget) is minimized, for which we choose a common
measure for regression problems: the mean squared error
(MSE) defined by

E(y,ytarget)=
1
Ny

Ny∑
i=1

(
1
Nt

Nt∑
n=1

(
yi(n)− ytarget

i (n)
)2)

. (3)

Before the training procedure, the input data u(n) are non-
linearly expanded into a higher-dimensional so-called reser-
voir space, generating in this way a new signal x(n) ∈ RNx .
This new representation of the data also contains temporal
information and is based on the following update equations:

x̃(n)= tanh(W inu(n)+Wx(n− 1)), (4a)
x(n)= (1−α)x(n− 1)+αx̃(n), (4b)

where the hyperbolic tangent (tanh) is applied component-
wise. Including a nonlinear activation function such as tanh
in the update equations enables the RC to estimate nonlin-
ear relationships among the input variables in contrast to less
sophisticated models such as the linear regressor, which can
only capture linear relationships. This gives the RC an ad-
vantage in scenarios where nonlinearities play a significant

role. The two matrices W in
∈ RNx×Nu and W ∈ RNx×Nx are

generated randomly according to chosen hyperparameters.
The non-zero elements of W and W in are sampled from a
uniform distribution over the range [−a,a]. The sparse ma-
trix W derives from a random network with mean degree
< k >, while W in is a dense matrix. The quantity α ∈ (0,1]
in Eq. (4b) is the leaking rate. The output layer is defined
as y(n)=W outx(n), where W out

∈ RNy×Nx , and during the
training procedure, only the weights of W out are estimated
by minimizing E(y,ytarget) through a linear regression pro-
cedure. We use a ridge regression to avoid overfitting, leading
to the loss function L:

L(W out)= E(y,ytarget)+ ε
Ny∑
i=1

Nx∑
j=1

(
W out
i,j

)2
. (5)

The hyperparameters are given by the dimension of the reser-
voir (Nx), the spectral radius of the matrix W (ρ), the spar-
sity of W ’s connections < k >, the input scaling a, and the
leaking rate α. Given an input sequence u(n)= ytarget(n), the
RC is trained by determiningW out from the sequence y(n)=
u(n+ 1)= ytarget(n+ 1) using the loss function (Eq. 5).

After training, the RC can be transformed into an au-
tonomous evolving dynamical system to be used for predic-
tion (Pathak et al., 2018). Thereto feedback connections be-
tween the outputs at time step n and the inputs at the subse-
quent time step are introduced. In this way, a model is gener-
ated that autonomously evolves in time according to

x(n+ 1)=(1−α)x(n)

+α tanh(Wx(n)+W inu(n+ 1)), (6a)
u(n+ 1)= y(n)=W outx(n), (6b)

where x(n) and x(n+1) are the reservoir states at time step n
and n+1, while y(n) is the output at time step n, and u(n+1)
is the input at the subsequent time step n+1. This property of
the RC allows us to make predictions similar to classical dy-
namical systems. Consequently, we can study how an initial
perturbation evolves in the RC.

In the results below, the input vector u consists of the fol-
lowing feature variables: the NINO3 index, the thermocline
depth anomalies hW and hE averaged over the regions 5–
5° S, 120–180° E, and 5° N–5° S, 180–290° E, respectively,
and the zonal surface wind-speed anomalies τC averaged
over the area 5° N–5° S, 145–190° E. Instead of directly us-
ing zonal surface wind-stress anomalies, zonal surface wind-
speed anomalies are used as a proxy. The two variables are
inherently correlated through the bulk formula (Eq. 2) and
therefore convey similar information. However, a key dis-
tinction arises from how noise is introduced in the ZC model,
specifically in the form of random zonal wind-stress anoma-
lies. This leads to random local fluctuations in the zonal
wind-stress signal, which are inherently difficult for the RC
to predict and reproduce. In contrast, the surface wind-speed
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anomaly signal is smoother and more predictable, making it
easier for the RC to learn and generalize efficiently.

In addition to the previous variables, a sine signal with a
12-month period was included to represent the seasonal cy-
cle such that Nu = 5. Although a combination of sine and
cosine signals is required to uniquely identify each month of
the year, we found that including both made little difference
in performance. Therefore, to minimize the number of input
variables and reduce the complexity of the learned function,
we decided to use only the sine signal. The output vector con-
sists of the same variables as in the input except for the sine
signal; hence, Ny = 4. In self-evolving mode, the sine signal
encoding the seasonal cycle is provided as an external input
rather than generated directly by the RC.

2.3 CNOP computation

Our implementation of the CNOP methodology follows the
one described by Duan et al. (2013). Let Mt0,t be the prop-
agator of a nonlinear model from initial time t0 to a chosen
end time te. We indicate v0 as the initial perturbation super-
imposed on the model’s background state V0 at time t0. For
a selected norm ‖.‖, an initial perturbation v0δ is defined as a
CNOP if and only if

J (v0)= ‖Mt0,te (V0+ v0)−Mt0,te (V0)‖, (7a)
J (v0δ)= max

C(v0)≤δ
J (v0), (7b)

where C(v0) is the constraint condition and Mt0,t (V0) rep-
resents the model state at time t when the integration starts
from the background state V0 at time t0. In Duan et al. (2013),
an initial perturbation is applied to all the grid points over the
tropical area, and the constraint condition to the initial per-
turbation amplitude C(v0) is defined as

C(v0)=
√∑

i,j

[(
w−1
T T ′i,j

)2
+
(
w−1
h h′i,j

)2]
, (8)

where T ′i,j and h′i,j are the initial sea surface temperature
anomalies (SSTA) and thermocline depth anomalies, respec-
tively, at grid point (i,j ). The weights wT = 2 °C and wh =
50 m represent the characteristic scale of SST and thermo-
cline depth anomalies, respectively.

As mentioned in Sect. 2.2, the RC is trained using a lim-
ited feature vector. To ensure a fair comparison of CNOPs
between those of the RC and the ZC models, the tropical area
of the ZC model is divided into boxes and uniform perturba-
tions are applied over those boxes. Specifically, we apply a
uniform SSTA perturbation T ′E over all the grid points in the
NINO3 area (5° N–5° S, 210–270° E); a uniform thermocline
depth perturbation h′W to all the grid points in the area 5° N–
5° S, 120–180° E; and a uniform thermocline depth pertur-
bation h′E to all the grid points in the area 5° N–5° S, 180–
290° E. The constraint condition can then be written as

C(v0)=
√(
w−1
T T ′E

)2
+
(
w−1
h h′E

)2
+
(
w−1
h h′W

)2
. (9)

For both the RC and the ZC model, the objective func-
tion J (v0) in Eq. (7b) has been defined as the root squared
error (RSE) between the perturbed and background trajec-
tories. Specifically, if we define the NINO3 index value at
time t when the integration start from the initial state V0 as
NINO3(t,V0), the objective function J (v0) is defined as

J (v0)=

√√√√t=tN∑
t=t0

(NINO3(t, (V0+ v0))−NINO3(t,V0))2, (10)

where tN = te. To solve the optimization problem associ-
ated with determining the CNOP, we use the gradient-free
COBYLA optimization algorithm (Powell, 1994). Since the
COBYLA algorithm starts its optimization process from a
random initial guess, we always perform 10 different realiza-
tions starting from 10 different initial guesses to select the
CNOPs that shows the largest error propagation according to
the value of J (v0); a detailed description of the COBYLA
algorithm is reported in Appendix B.

3 Results

In the Results section, we first explain the training and valida-
tion of the RC (Sect. 3.1), demonstrate the forecasting skills
of the RC (Sect. 3.2) while also demonstrating the impor-
tance of the zonal surface wind velocity anomalies as a train-
ing variable. Next, in Sect. 3.3, we present the results of the
CNOP analysis for both the RC and deterministic ZC mod-
els.

3.1 Training and validation of the RC

For both subcritical (rd = 0.77) and supercritical (rd = 0.9)
regimes, we first performed a simulation of 1000 years with
the stochastic ZC model using a time step of 10 d. We re-
fer to these data as synthetic observations. The NINO3 am-
plitudes of the supercritical case (Fig. 1b) are, as expected,
about a factor of 2 larger than those of the subcritical case
(Fig. 1a). As mentioned in Sect. 2.2, the 12-month-period
sine signal and the feature vector components hW , hE , τC ,
and NINO3 (extracted from the synthetic observation time
series) are used to train the RC. To investigate the effect of
τC on the performance of the RC, we also trained a second
RC using only hW , hE , NINO3, and the sine signal. Before
training, NINO3 and both hW and hE have been normalized
by wT = 2 °C and wh = 50 m, respectively. From the total
1000 years of synthetic observations, the first 300 years were
discarded to avoid capturing any initial transient behaviour.
The next 500 years were used for training and validation
(300 years for training and 200 years for validation), and the
last 200 years were used for testing, ensuring an indepen-
dent evaluation of the RC model performance. The training
of the RC is described in Sect. 2.2, where, given an input
sequence u(n)= ytarget(n), W out is determined from the se-
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quence y(n)= u(n+1)= ytarget(n+1) using the loss function
(Eq. 5).

To determine the performance of the RC, we use the RC
in self-evolving mode (Sect. 2.2) to make predictions using a
time step of 10 d. When we let the RC self-evolve, the only
external information we provide is the value of the sine signal
representing the current month of the year. All the other vari-
ables (NINO3, hE , hW , and τC when the latter is included
as a training variable) are directly produced by the output of
the RC and are not provided as external information during
prediction. To evaluate the RC’s performance over the entire
200 years of validation trajectories for different lead times,
we adopt a rolling approach. For each time step t(n) in the
validation dataset, an RC trajectory with a specific lead time
is generated. The final values of each trajectory, correspond-
ing to the lead time of interest, are then concatenated to form
a complete 200-year trajectory, say yfull. Before performing
inference, we always determine the internal RC state using
5 years of data prior to the time step t(n). Discarding the ini-
tial x(n) RC states for 0≤ n≤ ntransient is a common practice
in reservoir computing. This step is necessary to mitigate the
impact of initial transients caused by the arbitrary initializa-
tion of the reservoir state, which are typically set to x(0)= 0
or randomly initialized. In our case, we set x(0)= 0. This
initialization creates an artificial starting state that is unlikely
to recur once the reservoir dynamics stabilize. A warm-up
period is, therefore, necessary to allow the RC to reach a
stable dynamical regime. The length of this warm-up period
depends on the RC’s memory capacity and the specific learn-
ing task. Based on our experiments, we found that a 5-year
warm-up period is sufficient to stabilize the reservoir dynam-
ics and eliminate the effects of initial transients. As a result,
the reservoir states corresponding to the 5 years of data pre-
ceding the time step t(n) are used to initialize the RC internal
state and then discarded. In our notation, this means discard-
ing the x(n) reservoir states for t(n)− ntransient ≤ n≤ t(n),
where ntransient = 180 given our 10 d time step.

To identify the best set of hyperparameters, a separate val-
idation procedure was conducted for each regime (rd = 0.77
and rd = 0.9) and for each set of training variables (includ-
ing and excluding the zonal surface wind-speed anomalies)
using a Bayesian search. For each hyperparameter set, the
RC model’s 18-month lead time predictions were evaluated
using the root mean square (RMS) error computed includ-
ing all feature variables in yfull. The latter was done to en-
sure that the RC model could replicate the synthetic observa-
tions for all variables of interest rather than simply replicat-
ing the NINO3 index. Among all the different hyperparame-
ters, the reservoir dimensionNx is one of the most significant
for RC’s performance (Lukoševičius, 2012; Verstraeten et al.,
2007). Increasing Nx expands the reservoir’s state space, al-
lowing for a richer and more complex high-dimensional rep-
resentation of the input signal u(t) (see Sect. 2.2). Addition-
ally, largerNx values increase the reservoir’s memory capac-
ity.

During our experiments, the Bayesian search has consis-
tently converged on large Nx values, with a notable differ-
ence between the supercritical and subcritical regimes. In the
supercritical regime, the optimal reservoir dimension is ap-
proximately 400, regardless of whether the variable τC is in-
cluded during training. In the subcritical regime, the optimal
dimension is larger, with Nx = 476 when τC is included and
Nx = 534 when it is excluded. Table C1 in Appendix C re-
ports the optimal Nx values identified for each regime and
input variable configuration as well as the optimal values for
all other RC hyperparameters (see Sect. 2.2).

After validation, we evaluated the RC model’s perfor-
mance on the 200-year test set using these best hyperparam-
eter sets, as described next.

3.2 RC performances

Figure 2 presents the mean and standard deviation of the
anomaly correlation coefficient (ACC) of 50 different RC
prediction trajectories and the target NINO3 index from the
200-year test dataset, computed at a monthly time step (so av-
eraged over three model time steps). We evaluated the RC’s
ability to replicate the monthly NINO3 index rather than the
10 d time step index used for training since this is the com-
mon approach for assessing the performance of ENSO fore-
casting models. As the reservoir is generated by random W

andW in values, each RC needs to be retrained first (using the
300-year dataset) as described in Sect. 2.2, and hence multi-
ple RCs are used for evaluating the ACC. Again, a rolling
approach (as for the validation dataset; see Sect. 3.1) was
used for the test set, and hence the ACC is determined using
the 200-year vector yfull.

In the supercritical regime (Fig. 2b), the RC model per-
forms better when zonal surface wind-speed anomalies τC
are included as a training variable, though its performance
is also acceptable even when τC is excluded. On the other
hand, in the subcritical regime (Fig. 2a), the RC performance
for longer lead times (9 to 18 months) improves when τC is
excluded during training. In this regime, ENSO is primarily
driven by atmospheric noise, introduced in the Zebiak–Cane
model in the form of random zonal wind-stress burst (see
Sect. 2.1). When the model is initialized from ENSO neutral
conditions, optimal atmospheric noise patterns can trigger
transient growth of perturbations, provided the initial condi-
tions are favourable. Conversely, if a perturbation is already
developing, subsequent noise patterns can either reinforce or
damp its evolution. The variable τC is therefore particularly
useful for predicting the short-term variability of ENSO as
it provides critical information about external forcing that
influences early perturbation dynamics. Accordingly, in the
subcritical regime, the RC achieves better performances at
shorter lead times (3–6 months) when τC is included. At
longer lead times (9–18 months), improved predictive per-
formance requires the RC to rely more on system internal
dynamics rather than the short-term influence of stochastic
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Figure 1. NINO3 index from the last 700 years of the stochastic ZC model simulations (synthetic observations) used to train, validate, and
test the RC model: (a) rd = 0.77 and (b) rd = 0.9.

noise. Including τC during training can lead to overfitting,
causing the model to focus excessively on short-term noise
patterns instead of learning the internal system dynamics. In
the supercritical regime, nonlinearities play an essential role
(see Sect. 2.1). In the ZC model, these nonlinearities arise
from three main sources: heat advection, wind-stress anoma-
lies, and water temperature variations (Duan et al., 2013), all
of which influence the evolution of ENSO. This character-
istic is reflected in the RC model’s performance, which ex-
hibits improved predictive skill at both short and long lead
times when τC is included during training, underscoring the
importance of the nonlinear effects introduced by this vari-
able in this regime.

Overall, the RC performs better in the supercritical regime,
achieving an ACC of 0.8 at a 12-month lead time when zonal
surface wind-speed anomalies are included during training.
In contrast, in the subcritical regime, the RC model achieves
an ACC of 0.75 at a 12-month lead time when τC is excluded
during training.

To better appreciate the performance of the RC model, we
also compared it with a simple linear regressor as a bench-
mark; results are also included in Fig. 2. The comparison
between the LR and RC reveals that the performance im-
provement achieved by adopting the RC model is not dras-
tic. However, the results still demonstrate a clear and con-
sistent advantage in using the RC in both the subcritical
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Figure 2. Mean and standard deviation of the anomaly correlation coefficient (ACC) of 50 different RC model realizations and the 200-
year synthetic observations for the NINO3 index computed at a monthly time step. Results are shown for the two regimes: (a) subcritical
(rd = 0.77) and (b) supercritical (rd = 0.9), with zonal surface wind-speed anomalies (τC ) either included or excluded during training.
Results from the linear regressor are also included for comparison.

and supercritical regimes and regardless of whether the vari-
able τC is included during training. This improvement stems
from the nonlinear activation function used in the RC (see
Sect. 2.2), which enables it to capture nonlinear relationships
between input variables, which is something the LR model,
limited to linear approximations, cannot achieve. This advan-
tage is particularly clear in the supercritical regime, where
the RC model provides a more significant performance in-
crease compared to the subcritical regime. This is expected,
as nonlinearities play a more prominent role in the supercriti-
cal regime (see Sect. 2.1). Moreover, the relatively small per-
formance gap between the LR and the RC can be attributed
to the ZC model being a model of intermediate complex-
ity in which ENSO is a weakly nonlinear phenomena (e.g.
all wave dynamics in ocean and atmosphere is linear in the
model). The ZC model’s data exhibit simpler dynamics than
real-world observations or simulations with more complex
general circulation models (GCMs). In such cases, the per-
formance advantage of the RC over the LR is expected to be
more pronounced.

The ability of the RC model to mitigate the SPB is demon-
strated in Fig. 3. This figure presents the normalized mean
absolute error (MAE) between the median NINO3 of 50 dif-
ferent RC predictions and the corresponding target values
from the synthetic observation test dataset (see Sect. 3.1) at
various lead times and for both the RC initialized before the
SPB in March, April, and May and after the SPB in Septem-
ber, October, and November. As a comparison benchmark,
the normalized MAE for the linear regressor (LR) predic-
tions is also included for the same initialization months. Ad-
ditionally, to ensure a fair comparison between the subcriti-
cal and supercritical regimes, all RC and LR predictions and
the corresponding target values have been normalized by the
standard deviation of the 200-year synthetic observation test

dataset (0.47 for the supercritical regime and 0.24 for the sub-
critical regime) before computing the MAE. In Fig. 3, we
present results for the different input variable configurations
for both the subcritical and supercritical cases. Specifically,
the variable τC is excluded from the input variables in the
subcritical regime but included in the input variables in the
supercritical regime.

In both the subcritical and supercritical regimes, the RC
model outperforms the LR also in terms of mean absolute
error regardless of the initialization period. However, to a
certain extent, it is still affected by the SPB, which occurs
in May in the ZC model (as discussed in Sect. 2.1). On the
other hand, the RC model demonstrates a clear ability to mit-
igate the effects of the SPB compared to the LR. This can be
most clearly seen when comparing the pre-spring initializa-
tion performance of the two models at 3- and 6-month lead
times. In the supercritical regime, with pre-SPB initializa-
tion, the RC model achieves a normalized MAE of 0.2 at a
3-month lead time and 0.35 at a 6-month lead time, while the
LR shows a higher normalized MAE of 0.3 at a 3-month lead
time and 0.5 at a 6-month lead time. In the subcritical regime,
with pre-SPB initialization, the RC achieves a MAE of 0.34
at a 3-month lead time and 0.5 at a 6-month lead time, while
the LR shows a MAE of 0.36 at a 3-month lead time and 0.54
at a 6-month lead time. In the supercritical regime, the RC
shows a larger performance improvement compared to the
subcritical regime, where the difference in performance with
respect to the LR is less evident. Moreover, also in terms of
normalized MAE, the RC performs better in the supercritical
regime than in the subcritical one.
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Figure 3. Normalized mean absolute error (MAE) between the median of 50 different RC realizations’ predictions and the 200-year synthetic
observation test set for the NINO3 index computed at a monthly time step, and with the RC initialized both before (March, April, and
May) and after (September, October, and November) the SPB: (a) rd = 0.77, zonal surface wind-speed anomalies excluded during training.
(b) rd = 0.9, zonal surface wind-speed anomalies included during training. Results from the linear regressor (LR) are also included for
comparison. Both predictions and target values have been normalized by the standard deviation of the 200-year synthetic observation test
dataset (0.47 for the supercritical regime and 0.24 for the subcritical regime) before computing the MAE.

3.3 CNOP analysis

For both the RC model and the deterministic ZC model and
for both rd = 0.77 (subcritical regime) and rd = 0.9 (super-
critical regime), we computed the CNOPs for different lead
times using the last 50 years of the 200-year synthetic ob-
servation test dataset as initial conditions (cf. Sect. 3.1). This
choice has been made to balance computational efficiency
and statistical significance. The CNOP computations using
the COBYLA algorithm are highly computationally expen-
sive, and 50 years of data is sufficient to obtain statistically
significant results. By selecting the last 50 years of the 200-
year test period, we also ensure complete statistical indepen-
dence between the training and test data. For the RC model,
perturbations were directly applied to NINO3 and mean ther-
mocline depth anomalies (hE and hW ). In contrast, for the
deterministic ZC model, a uniform perturbation was applied
over three different boxes in the Pacific for both SSTA and
thermocline depth anomalies (as described in Sect. 2.3).

Before computing the CNOPs for the RC model, we iden-
tified and saved the best-performing RC realization out of
50 for each combination of lead time, rd value, and training
variable set based on the forecasting skill for the 200-year
synthetic observation test period (see Sect. 3.1). The top-
performing realization (for each combination of lead time,
rd value, and training variables) was then considered for the
CNOP computation. This was done to avoid biases related
to the random initialization of the RC. We computed the
CNOPs for lead times 3, 6, and 9 months (the optimization
time considered during the CNOP computation), focusing on
a single constraint value δ = 0.05 and a specific forecast ini-
tialization season just before the SPB, encompassing March,

April, and May. The value of δ corresponds to a maximum
NINO3 perturbation of 0.1 °C (Sect. 2.3) or a maximum he
or hw perturbation of 2.5 m. For the deterministic ZC model,
the same procedure to compute the CNOP was used (see
Sect. 2.3). To quantify the divergence between two trajecto-
ries caused by the CNOPs, for both the RC and the ZC mod-
els, we computed the root square error (RSE) distance be-
tween the perturbed and unperturbed NINO3 trajectories as
defined in Eq. (10). This distance was used to estimate each
model’s sensitivity to initial condition perturbations, given a
specific initial state. To make a fair comparison between the
subcritical and supercritical regimes, all the RSE distances
obtained have been normalized by the standard deviation of
the 50 years of NINO3 synthetic observations considered for
the CNOP computation (0.29 for the subcritical regime and
0.56 for the supercritical regime).

In the supercritical regime (Fig. 4b), the RC model is
more susceptible to initial perturbations at shorter lead times.
However, at a 6-month lead time, the RC model’s sensitivity
to initial perturbations becomes, on average, smaller when
τC is excluded during training and similar to that of the de-
terministic ZC model when τC is included during training
(see Table D2). At a 9-month lead time, the RC’s sensitiv-
ity to initial perturbations is on average smaller for both τC
included and excluded. At both 6- and 9-month lead times,
the deterministic ZC model’s sensitivity results show a much
wider distribution than the RC regardless of whether τC is
included or excluded as a training variable. In the subcritical
regime (Fig. 4a), the RC model becomes more susceptible to
perturbations than the deterministic ZC model when τC is in-
cluded as a training variable. Conversely, when this variable
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is excluded, the RC model shows less sensitivity to pertur-
bations than the deterministic ZC model. This difference is
likely because including τC as a training variable causes the
RC model to more easily learn the noise component of syn-
thetic observations. Since ENSO variability in the subcritical
regime is highly affected by noise, including these anomalies
during training leads to a system with a larger error propaga-
tion.

Previous studies (Mu et al., 2007) have quantified the SPB
in the deterministic ZC model using the CNOP framework,
revealing that the deterministic ZC model is particularly sen-
sitive to initial perturbations when initialized just before the
boreal spring season. Our results support this finding, show-
ing that the deterministic ZC model exhibits a stronger sensi-
tivity to initial condition perturbations when initialized close
to the SPB than when it is initialized later in the year (see
Fig. D1 in Appendix D). This also holds for summer ini-
tialization (not shown) in June, July, and August, where the
models show results similar to spring initialization in March,
April, and May, with the RC mitigating sensitivity to initial
perturbations in a similar manner. This behaviour is due to
the proximity of the summer season to the SPB. The CNOP
cost function evaluates the distance between the entire per-
turbed and unperturbed trajectories (see Eq. 10), taking all
months into account. When the deterministic ZC model in-
tegration is initialized just before the SPB, the number of
months affected by the SPB is maximized, and at longer lead
times (6 and 9 months), we observe a pronounced increase
in the sensitivity to initial condition perturbations compared
to when the model is initialized in the autumn and winter
seasons. This effect is also found when comparing the sen-
sitivities of autumn and winter initializations. Compared to
an autumn-initialized trajectory, an integration initialized in
winter has crossed the SPB before at a 9-month lead time,
and the sensitivity to initial perturbations for an integration
initialized in winter is, on average, larger than for the autumn
initialization.

On the other hand, when the RC is initialized later than
the SPB, it exhibits a sensitivity to initial perturbations sim-
ilar to that found when it is initialized just close to the SPB
(see Table D2). As the number of months affected by the SPB
increases (at 6- and 9-month lead times, with a forecast ini-
tialized in spring), the RC effectively reduces both the aver-
age sensitivity to initial condition perturbations and the width
of sensitivity results’ distribution compared to the ZC model,
consequently decreasing the number of events strongly sen-
sitive to initial condition perturbations. The only exception
is the trained RC, including the variable τC in the subcritical
regime, which consistently has a greater sensitivity to initial
condition perturbations than the deterministic ZC model for
reasons already mentioned above. Moreover, the inclusion
of this variable decreases the performance of the RC in the
subcritical regime at longer lead times (see Sect. 3.2). These
results demonstrate that the RC model effectively mitigates
the sensitivity to initial condition perturbations at long lead

times (6 and 9 months) when a forecast is initialized just be-
fore the SPB compared to the ZC model, for which the spring
season corresponds to the strongest sensitivity to initial per-
turbations. This capability explains why the RC model can
reduce the effects of the SPB, delivering skilful predictions
at long lead times.

Figure 5 shows the estimated CNOPs for both the ZC and
RC models when initialized just before the SPB in March,
April, and May. The estimated CNOPs are presented for the
NINO3 index and the sum of the thermocline perturbations
in the eastern and western Pacific (hE+hW ). The ZC model’s
sensitivity to initial NINO3 perturbations decreases as the
forecasting lead time increases. In contrast, perturbations to
the thermocline depth become increasingly crucial for opti-
mal perturbation growth at longer lead times. This is true for
both rd = 0.77 and rd = 0.9. On the other hand, the CNOPs
of the RC have different behaviour for both the supercriti-
cal and subcritical regimes. The RC is sensitive to quite dif-
ferent initial perturbations, leading to less variability in the
error propagation compared to the ZC model. This is sup-
ported by Fig. 6, which shows the distribution of the CNOPs
in the (NINO3, hE +hW ) plane for a 9-month lead time.
For visualization purposes, the initial anomalies for NINO3
and (hE +hW ) have been normalized dividing by 2 °C and
50 m, respectively (see Sect. 2.3). The CNOPs for the RC
and the ZC models show a strongly different distribution. The
RC model consistently exhibits greater sensitivity to NINO3
perturbations at both short (3-month) and long (6- and 9-
month) lead times, while the ZC model shows increasing
sensitivity to initial thermocline depth perturbations as the
optimization time extends. In the ZC model, ENSO variabil-
ity is strongly influenced by thermocline feedback (Zebiak
and Cane, 1987). The RC reduces this sensitivity at longer
lead times, helping to mitigate error propagation over time.

Another notable characteristic, visible in Fig. 5, is that the
ZC model exhibits a highly symmetrical distribution for the
hE +hW CNOPs at a 9-month lead time as well as for the
NINO3 CNOPs at a 3-month lead time. In contrast, the RC
model shows a more biased distribution for the estimated
NINO3 CNOPs, particularly in the subcritical regime and at
shorter lead times (3 months) in the supercritical regime. At
longer lead times (9 months) in the supercritical regime, the
RC model still shows a relatively symmetrical distribution
for the estimated NINO3 CNOPs.

To better understand the origin of these differences, we
classify the initial conditions analysed (before applying
the CNOPs), spanning the months of March, April, and
May into three groups based on the initial eastern Pacific
sea surface temperature anomalies (SSTAs). Specifically,
in the supercritical (subcritical) regime, we define an ini-
tial state as positive if the corresponding initial NINO3
index is larger than 0.2 (0.1) °C, negative if the initial
NINO3 index is smaller than −0.2 (−0.1) °C, and neutral
if −0.2 (−0.1) °C≤ NINO3≤ 0.2 (0.1) °C. The initial states
have been classified in a different way for the supercritical
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Figure 4. Distribution of the normalized RSE distances between the perturbed and unperturbed trajectories for different lead times when
CNOPs are applied, taking as initial conditions the months of March, April, and May for (a) rd = 0.77 and (b) rd = 0.9. The boxes indicate
the interquartile range (IQR), the range within which the central 50 % of data points are located. The whiskers extend to the minimum and
maximum values within 1.5 times the IQR from the first and third quartile. The central line corresponds to the median. All the RSE distances
have been normalized by the standard deviation of the NINO3 index extracted from the 50 years of synthetic observations considered for the
CNOP computation (0.29 for the subcritical regime and 0.56 for the supercritical regime).

and subcritical regimes to account for the fact that in the
subcritical regime, the amplitude of NINO3 is a factor of 2
smaller compared to the supercritical regime; see Sect. 3.1.

As shown in Fig. D2 in Appendix D, when the ZC model’s
SSTA initial condition in the eastern Pacific is characterized
by a positive (negative) anomaly, the optimal initial perturba-
tion for hE +hW for a 9-month optimization period is neg-
ative (positive) if the model is initialized before the event’s
peak. This limits the propagation of the anomaly, leading to
a weaker El Niño (La Niña) event if the model is initialized
prior to the event’s peak. Conversely, if the model is initial-
ized after the event’s peak, the negative (positive) thermo-
cline perturbation drives a faster and steeper return to neutral
conditions.

When the ZC model is initialized from neutral condi-
tions, the sign of the estimated CNOPs for hE+hW depends
on the reference trajectory. If the system transition into an
El Niño event, the optimal hE +hW is negative, thus damp-
ening the positive anomaly; if it transitions into a La Niña
event, the optimal hE +hW is positive, suppressing the neg-
ative anomaly.

The same reasoning applies to the 3-month-lead-time
NINO3 optimal perturbations: a negative (positive) NINO3
perturbation weakens the near-term growth of an initially
positive (negative) eastern Pacific SSTA.

Regarding the RC model, as shown in Fig. D3, the esti-
mated CNOPs for the NINO3 index at a 9-month lead time
in the supercritical regime exhibit a fairly symmetrical distri-
bution overall. However, significant differences emerge de-
pending on whether the variable τC is included during train-
ing, as well as in comparison with the ZC model. When τC
is included and the RC is initialized before the peak of an

event, the optimal NINO3 perturbation is positive (negative)
for initial conditions characterized by a positive (negative)
eastern Pacific SSTA, thereby reinforcing the initial anomaly
and leading to larger El Niño (La Niña) events. In contrast,
when the RC is initialized after the peak of a positive (neg-
ative) event, the optimal NINO3 perturbation reverses sign,
resulting in a faster and steeper return to neutral conditions.

Neutral initial conditions tend to prefer negative NINO3
perturbations, resulting in stronger La Niña and weaker
El Niño events relative to the reference trajectories. When
τC is not included during training, positive SSTA initial con-
ditions still favour positive optimal NINO3 perturbations,
yielding stronger El Niño events when the model is initial-
ized before the peak. In contrast, for events characterized by
negative initial eastern Pacific SSTAs, the optimal NINO3
perturbations are positive, thereby mitigating the develop-
ment of the initial negative anomaly over time. Moreover,
neutral initial conditions exhibit a stronger tendency toward
positive optimal NINO3 perturbations in the absence of τC .

In the subcritical regime, the optimal NINO3 perturbation
at a 9-month lead time exhibits a marked asymmetry. As il-
lustrated in Fig. D3, including τC during training leads to
consistently negative optimal perturbations across all three
categories of initial conditions, whereas excluding τC re-
sults in positive optimal perturbations for every category. At
shorter lead times (3 months), in both subcritical and su-
percritical regimes and regardless of whether τC is included
during training, the RC model clearly prefers negative op-
timal NINO3 perturbations. These results highlight the in-
fluence of τC on the estimated CNOPs, particularly in the
subcritical regime. Further evidence of τC’s impact in both
supercritical and subcritical regimes appears when examin-
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Figure 5. Violin plots showing the distribution of the CNOPs obtained for both the NINO3 index and hE +hW (sum of the thermocline
anomalies for both the western and eastern Pacific). (a, c) rd = 0.77 (b, d) rd = 0.9. In both cases, δ = 0.05; the period considered corresponds
to the last 50 years of the 200-year synthetic observation test dataset; and the months of March, April, and May are taken as initial conditions.

Figure 6. Scatter plot of the CNOPs in the normalized NINO3 index, hE +hW anomaly plane. (a) rd = 0.77. (b) rd = 0.9. In both cases,
δ = 0.05; the period considered corresponds to the last 50 years of the 200-year synthetic observation test dataset; the months of March,
April, and May are taken as initial conditions; and the lead time considered is 9 months. The NINO3 index and hE +hW anomalies are
normalized by dividing by 2 °C and 50 m, respectively.
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ing another result shown in Fig. 5, where we find that ex-
cluding zonal surface wind-speed anomalies during train-
ing in the subcritical regime causes the RC model to ex-
hibit greater sensitivity to thermocline depth perturbations at
longer lead times compared to the supercritical regime and to
the subcritical regime when τC is included during training.
However, even in this scenario, the RC remains less sensi-
tive to thermocline depth anomalies than the ZC model. In
the subcritical regime, ENSO variability is primarily driven
by atmospheric noise, introduced as stochastic wind-stress
forcing. This noise affects the thermocline slope, activating
mechanisms that lead to the development of perturbations.
When the variable τC is included during training, the RC ex-
plicitly learns the relationship between wind-stress anoma-
lies and thermocline adjustments, and the state of the sur-
face winds is provided as an initial condition. Consequently,
smaller thermocline perturbations can be amplified by wind-
stress anomalies, resulting in larger deviations from the un-
perturbed trajectory. As a result, the optimal initial pertur-
bations primarily target the NINO3 index, favouring nega-
tive NINO3 perturbations, while the optimal hE +hW per-
turbations are only slightly negative and closer to zero fol-
lowing the same trend as the NINO3 CNOPs. The impact of
these optimal perturbations varies based on the initial con-
ditions. When the RC is initialized with positive or slightly
positive (neutral) eastern Pacific SSTA, negative NINO3 and
hE +hW perturbations suppress or weaken the evolution of
positive initial anomalies, resulting in a faster return to neu-
tral conditions. Conversely, when the RC is initialized with
negative or slightly negative (neutral) eastern Pacific SSTA,
negative NINO3 perturbations amplify the evolution of neg-
ative anomalies, leading to either a stronger La Niña event
or a longer persistence of La Niña conditions if the RC is
initialized after the peak.

When τC is not included, the RC learns only the direct
relationship between NINO3 and thermocline depth anoma-
lies without explicit knowledge of how wind anomalies in-
fluence thermocline slope adjustments. As a result, in the ab-
sence of wind-forcing information, larger initial thermocline
perturbations are required to induce significant error growth
over time. Under these conditions, the optimal initial pertur-
bations consist of both positive NINO3 and positive hE+hW
perturbations.

The effect of these optimal perturbations again depends on
the initial conditions. When the RC is initialized with posi-
tive or slightly positive eastern Pacific SSTA, the combina-
tion of positive NINO3 and hE +hW perturbations signifi-
cantly enhances the evolution of positive anomalies, leading
to a stronger El Niño event if the RC is initialized before the
peak. If the RC is initialized after the peak, these perturba-
tions extend the duration of El Niño conditions by delaying
the decay of warm anomalies.

For negative or slightly negative (neutral) initial condi-
tions, the positive optimal perturbations effectively suppress

the further development of negative anomalies, once again
accelerating the return to neutral conditions.

In the supercritical regime, thermocline depth perturba-
tions are not purely activated by atmospheric noise but also
emerge due to the internal instability of the system. The in-
fluence of stochastic atmospheric noise is weaker than in the
subcritical case. This means that even if the model does not
explicitly account for the effect of wind-stress forcing on the
thermocline slope, strong initial thermocline depth anoma-
lies are not needed to maximize error propagation. However,
even in the supercritical regime, when τC is not included,
the RC remains more sensitive to initial thermocline pertur-
bations at longer lead times than when τC is included, but
the difference is much less pronounced than in the subcriti-
cal regime. Also the differences in terms of the distribution
of the optimal perturbations per initial condition category is
less pronounced compared to the subcritical regime and is
only evident for the negative and neutral initial conditions
(not for the positive ones).

4 Summary and discussion

Relatively limited research has been carried out to under-
stand the underlying reasons for the strong performance of
ML prediction models in ENSO prediction, in particular their
apparent ability to reduce error propagation and overcome
the spring predictability barrier (SPB) as deduced from dy-
namical models. In previous studies, explainable AI tech-
niques like layerwise relevance propagation (LRP) have been
used to identify and estimate which patterns in the data are
exploited by machine learning (ML) methods to make spe-
cific ENSO predictions (Ham et al., 2019; Rivera Tello et al.,
2023) or to explore teleconnections of ENSO (Ito et al., 2021;
Liu et al., 2023b). The LRP technique has also been extended
to the echo state network (ESN) framework to investigate the
importance of the leaking rate parameter α and the ESN’s
robustness to random input perturbations while performing a
El Niño/La Niña binary classification task (Landt-Hayen et
al., 2022). In a recent study (Qin et al., 2024), an approach
similar to ours is followed using the CNOP framework to es-
timate optimal initial perturbations for a U-net deep learning
model trained on both reanalysis data and simulations from
various CMIP6 global circulation models (GCMs). They val-
idated their results with the GFDL CM2p1 numerical model,
showing that the deep learning models and numerical models
exhibit a similar error evolution over time for the same initial
conditions and superimposed perturbations. However, their
automatic differentiation-based optimization algorithm only
applies to deep learning architectures, preventing them from
determining whether the deep learning and numerical mod-
els show the same optimal initial perturbations and leading
to the largest error propagation.

In our study, we address this limitation by employing a
gradient-free optimization algorithm (COBYLA), enabling a
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fair comparison between a reservoir computing (RC) model
and the Zebiak–Cane (ZC) numerical model. Our results in-
dicate that the RC model effectively reduces error growth
from optimal initial perturbations compared to the ZC model,
offering a plausible explanation for its higher predictive skill.
It is important to clarify that the main objective of our study
is to demonstrate that the RC can mitigate error propaga-
tion resulting from initial condition perturbations more ef-
fectively than a classical dynamical numerical model. Such
an analysis and comparison is impossible using real-world
observations as we do not know the evolution operator of the
real-world system and hence cannot determine the CNOP.
Nevertheless, the CNOP framework can still be applied to an
RC model trained on actual observations. This approach can
be used to precisely assess the potential of the RC model,
as well as other machine learning methodologies, to predict
the real ENSO system and to estimate their corresponding
predictability limits more accurately.

Furthermore, assessing whether an RC trained with real
observations exhibits similar sensitivity to specific variables
as an RC trained on synthetic data from the ZC or other dy-
namical numerical models can provide helpful information to
modellers. In particular, identifying differences in the vari-
ables to which the skill of the RC model is most sensitive
can help determine whether key physical processes are being
captured realistically, offering guidance on refining ENSO
representation. Applying the CNOP approach to machine
learning models trained on real observations could offer fur-
ther benefits. For instance, while our study uses an RC model
with a highly reduced input state vector consisting of just
four indices, employing a more complex architecture, such as
a convolutional neural network (CNN) capable of analysing
two-dimensional input fields, would allow the CNOP frame-
work to identify the regions and variables to which the skills
of the model is most sensitive. These insights could inform
more precise and targeted data acquisition strategies. While
such experiments with real observations are beyond the scope
of the present study, they present a promising direction for
future research.

In our study, we first demonstrate that the RC, when
trained on data from the stochastic ZC model (acting as syn-
thetic observations), exhibits good predictive skill up to an
18-month lead time and hence effectively overcomes the SPB
problem in both the subcritical and supercritical regimes.
In the supercritical regime, the RC model performs better
when zonal surface wind-speed anomalies are included dur-
ing training, while in the subcritical regime, the RC actually
performs better for longer lead times (9 to 18 months) when
the zonal surface wind-speed anomalies are excluded. While
this result may depend on the implementation of the wind-
stress noise (Feng and Dijkstra, 2017), which we restrict here
mostly to the eastern Pacific (using only the first EOF of the
residual wind-stress field), the reason is that the RC is over-
fitting the noise in the subcritical regime.

Previous studies have also noticed strong predictive per-
formances when applying the RC to ENSO forecasting. For
instance, Hassanibesheli et al. (2022) achieved high predic-
tion skills (ACC> 0.8) up to a lead time of 14 months when
training the RC with the observed NINO3 and NINO3.4 in-
dexes, decomposed into a low-frequency and high-frequency
components. Their performance is comparable to ours at long
lead times, but our model performs better at shorter lead
times (3–6 months). Additionally, like in our study, they
found that their approach could mitigate the SPB problem.
However, care must be taken when comparing our findings
with their results due to substantial differences in the data
used for training, the training variables considered, and the
implementation of the forecasting framework.

After the RC performance analysis, we investigated the
propagation of errors in initial conditions in boreal spring
(just before the SPB) for both the RC and deterministic ZC
models using the conditional nonlinear optimal perturbation
(CNOP) approach (Duan et al., 2013). In the supercritical
regime, the RC can significantly reduce error propagation in
particular at longer lead times (6–9 months). In the subcriti-
cal regime, the RC is less susceptible to perturbations com-
pared to the ZC model when surface wind-speed anomalies
are excluded during training and more susceptible when they
are included. The reduced sensitivity of AI models to small
initial perturbations has also been found in Selz and Craig
(2023). In that study, the inability of the AI frameworks to re-
produce the butterfly effect of the atmosphere was considered
a limitation as it prevents the generation of large ensembles
due to inadequate error growth properties. However, as noted
in Selz and Craig (2023), this limitation can be mitigated by
training multiple models with different random seeds to gen-
erate a confidence interval. We argue that this reduced sensi-
tivity to initial perturbations is not a disadvantage but is what
enables AI models to extend the predictability horizon of a
system, allowing them to maintain higher predictive skills
at longer lead times. The actual CNOPs have quite a differ-
ent pattern for the ZC and RC cases; the CNOP pattern of
the ZC resembles the one obtained in earlier papers (Duan et
al., 2013) with a dominant response in the thermocline field
for longer lead times, but in the CNOP pattern of the RC, a
strong sea surface temperature component is also present.

The thermocline anomalies are important for error propa-
gation at the longer timescales, in particular in the ZC model,
in which the ENSO variability is highly affect by the ther-
mocline feedback (Zebiak and Cane, 1987). Hence, effec-
tively, the RC model reduces the components in the thermo-
cline anomalies and hence reduces error propagation. While
we restricted to only particular cases, as we only used one
value of parameter in the constraint condition δ and we al-
lowed only one EOF in the ZC wind-stress noise, we think
that the modification of the dynamical behaviour in the RC
(with respect to the ZC) to change the spatio-temporal prop-
erties of the error propagation is the key explanation for the
superior skill of the RC on long lead times and the reason for
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us being able to overcome the SPB. As a final remark, we
specify that this mechanism is proposed to explain the RC’s
superior performance within a relatively short-term predic-
tion horizon as opposed to the decadal timescales required to
assess the long-term dynamics and statistics of ENSO. De-
veloping an emulator that captures the long-term dynamics
and statistics of a system is an entirely different task, neces-
sitating distinct model architectures, hyperparameter config-
urations, and evaluation criteria compared to those adopted in
our study, such as assessing how effectively a model captures
the intrinsic nonlinearities of the system. In recent years, var-
ious machine learning models have demonstrated impressive
predictive skills at up to a 21-month lead time without nec-
essarily capturing all the underlying physical processes of
ENSO. The results shown here for the reservoir computer
can be extended to other machine learning models, poten-
tially explaining their predictive skills at up to a nearly 2-year
lead time, far beyond the SPB.

Appendix A: Zebiak–Cane model

Figure A1. First EOF of the residual zonal wind-stress anomalies as
determined from the ORAS5 dataset (Copernicus Climate Change
Service, 2021).

Figure A2. NINO3 index from the deterministic ZC model for
(a) rd = 0.79 and (b) rd = 0.8.
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Figure A3. Frequency of the occurrence of La Niña and El Niño
events for each calendar month. (a) rd = 0.77 (b) rd = 0.9. For both
rd values, a stochastic ZC model realization of 1000 years has been
considered.

Figure A4. Level of autocorrelation of the NINO3 index for dif-
ferent starting months for (a) rd = 0.77 and (b) rd = 0.9. The black
dots indicate the lag month corresponding to the maximum decrease
in autocorrelation. In each case, a 1000-year stochastic ZC model
realization has been considered.
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Appendix B: COBYLA algorithm

The Constrained Optimization BY Linear Approximations
(COBYLA) algorithm (Powell, 1994) is a gradient-free opti-
mization method designed to solve nonlinear constrained op-
timization problems. Given an objective function J (x) to be
minimized, where x ∈ Rn, and a set of nonlinear constraints
Ci(x)≤ 0, the algorithm starts from an initial guess x0 and
constructs an initial n-dimensional simplex represented by a
set of n+1 vertices, V (0)

= {v
(0)
1 ,v

(0)
2 , . . .,v

(0)
n+1} ⊂ Rn. Each

vertex is defined as v(0)
i = x0+ρbegei , where ei is the ith co-

ordinate vector (a standard basis vector in Rn) and ρbeg is a
specified initial trust-region radius that determines the initial
simplex size.

At each iteration, the algorithm constructs a linear ap-
proximation of both the objective function and the con-
straints using a linear interpolation at the n+ 1 current sim-
plex vertices V (i). It then identifies the worst-performing ver-
tex, denoted as v(i)

worst = argmaxv∈V (i)J (v). Once the worst-
performing vertex is found, the algorithm formulates and
solves a linear optimization problem within a trust region
of radius ρ around v(i)

worst to generate a new candidate ver-
tex v(i+1)

new . If this new vertex improves the objective function,
it replaces v(i)

worst, updating the simplex structure. Otherwise,
the trust-region radius is reduced, and the linear optimization
problem is solved again.

The algorithm continues iterating until one of the stopping
criteria is met. It terminates when the trust-region radius ρ
falls below a predefined threshold ρend, when the change in
the objective function is smaller than a specified tolerance
ε, or when the number of iterations reaches the maximum
allowed value Nmax. COBYLA is particularly well suited
for nonlinear optimization problems with a small number of
variables, especially when computing derivatives is challeng-
ing or infeasible. These characteristics make COBYLA an
ideal choice for our analysis as the ZC model’s derivatives
are impossible to compute and our optimization problem in-
volves only three variables (see Sects. 2.3 and 3.3).

To validate the estimated CNOPs obtained using
COBYLA for both the RC and ZC models, we first confirm
that the CNOPs lie on the boundary of the sphere defined by
the constraints. Next, we evaluate error propagation by ap-
plying multiple randomly chosen initial perturbations sam-
pled from this boundary to determine whether the CNOPs
indeed correspond to the largest error growth. Figures B1
and B2 present these validation results. Specifically, Fig. B1
shows a scatter plot of all estimated CNOPs for both mod-
els in the three-dimensional space defined by the normalized
NINO3, hE , and hW optimal initial perturbations. In con-
trast, Fig. B2 illustrates, for a representative case, the diver-
gence between perturbed and unperturbed trajectories result-
ing from both the CNOP and 50 random initial perturbations
sampled along the constraint boundary. For illustration, re-
sults are provided for five different years, with both the RC
and ZC models always initialized in April.

For our implementation, we adopted the COBYLA solver
from the SciPy Python library (Virtanen et al., 2020). Since
COBYLA is inherently designed to solve minimization prob-
lems, while our objective is to maximize the distance be-
tween the reference and perturbed trajectories (see Sects. 2.3
and 3.3), we account for this by minimizing −J (x) instead
of J (x).
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Figure B1. Scatter plot of all computed CNOPs in the normalized NINO3 index vs. hE and hW anomaly plane for (a) the ZC model
and (b) the RC model for both τC included and excluded during training. The NINO3 index is normalized by 2 °C, while the hE and hW
anomalies are normalized by 50 m.

Figure B2. Scatter plot of the RMS differences between perturbed and unperturbed trajectories for three model years with both the RC and
ZC models always initialized in April. Results are presented for the CNOP (i.e. the optimal initial perturbation) and for 50 random initial
perturbations sampled from the boundary of the constraints.
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Appendix C: Optimal RC hyperparameters

Table C1. The optimal RC model’s hyperparameter sets for the supercritical (rd = 0.9) and subcritical (rd = 0.77) regimes and each input
variable configuration (with and without the inclusion of τC ).

Input variables rd Best hyperparameters

NINO3, hE , hW , τC 0.9 Nx = 391, ρ = 0.84, 〈k〉 = 0.16, a = 0.8, α = 0.57
NINO3, hE , hW 0.9 Nx = 404, ρ = 1.07, 〈k〉 = 0.20, a = 0.58, α = 0.39
NINO3, hE , hW , τC 0.77 Nx = 476, ρ = 0.80, 〈k〉 = 0.10, a = 0.63, α = 0.60
NINO3, hE , hW 0.77 Nx = 534, ρ = 0.88, 〈k〉 = 0.10, a = 0.38, α = 0.17

Appendix D: CNOPs

Figure D1. Distribution of the normalized RSE distances between perturbed and unperturbed trajectories for different lead times with the
application of CNOPs, using initial conditions from (a, b)December, January, and February and (c, d) September, October, and November.
The left plots in (a) and (c) display results for rd = 0.77, while the right plots in (b) and (d) show results for rd = 0.9. The boxes indicate
the interquartile range (IQR), the range within which the central 50 % of data points lie. The whiskers extend to the minimum and maximum
values within 1.5 times the IQR from the first and third quartile. The central line corresponds to the median. The RSE distances are normalized
by the standard deviation of the NINO3 index extracted from the 50 years of synthetic observations considered for CNOP computation (0.29
for the subcritical regime and 0.56 for the supercritical regime).
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Table D1. Table showing the median of the normalized RSE distances between perturbed and unperturbed trajectories at various lead
times with CNOPs applied across different starting seasons. Only the Zebiak–Cane model is considered, with the top table representing the
subcritical regime (rd = 0.77) and the bottom table representing the supercritical regime (rd = 0.9). All RSE distances are normalized by
the standard deviation of the NINO3 index from the 50 years of synthetic observations considered for the CNOP computation (0.29 for the
subcritical regime and 0.56 for the supercritical regime).

Subcritical regime (rd = 0.77)

Start/lead 3 months 6 months 9 months

Spring 0.6 1.52 1.88
Winter 0.56 1.16 1.78
Autumn 0.62 1.08 1.47

Supercritical regime (rd = 0.9)

Start/lead 3 months 6 months 9 months

Spring 0.41 1.41 2.07
Winter 0.34 0.94 1.60
Autumn 0.48 0.96 1.28

Bold: forecast crosses the SPB. Italic: forecast does not cross the SPB.
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Table D2. Median (IQR) of the normalized RSE distances between perturbed and unperturbed trajectories at various lead times with CNOPs
applied across different starting seasons. Both ZC and RC models (trained with and without τC ) are considered in the subcritical (rd = 0.77)
and supercritical (rd = 0.9) regime. RSE distances are normalized by the standard deviation of NINO3 index from the 50 years of synthetic
observations considered for CNOP computation (0.29 for the subcritical regime and 0.56 for the supercritical regime). The interquartile range
(IQR) is defined as the distance between the first and third quartile.

Subcritical regime, τC included during training

Model Start/lead 3 months 6 months 9 months

RC
Spring 1.35 (0.14) 2.07 (0.33) 2.40 (0.54)
Winter 1.42 (0.33) 2.19 (0.52) 2.33 (0.71)
Autumn 1.24 (0.12) 1.89 (0.14) 2.21 (0.10)

ZC
Spring 0.60 (0.28) 1.52 (1.49) 1.88 (1.86)
Winter 0.56 (0.17) 1.16 (0.74) 1.78 (1.23)
Autumn 0.62 (0.32) 1.08 (0.88) 1.47 (1.01)

Subcritical regime, τC excluded during training

Model Start/lead 3 months 6 months 9 months

RC
Spring 0.76 (0.11) 1.20 (0.05) 1.44 (0.08)
Winter 0.79 (0.16) 1.22 (0.03) 1.44 (0.06)
Autumn 0.75 (0.12) 1.24 (0.05) 1.47 (0.08)

ZC
Spring 0.60 (0.28) 1.52 (1.49) 1.88 (1.86)
Winter 0.56 (0.17) 1.16 (0.74) 1.78 (1.23)
Autumn 0.62 (0.32) 1.08 (0.88) 1.47 (1.01)

Supercritical regime, τC included during training

Model Start/lead 3 months 6 months 9 months

RC
Spring 0.86 (0.09) 1.46 (0.22) 1.82 (0.32)
Winter 0.91 (0.33) 1.52 (0.44) 1.95 (0.64)
Autumn 0.75 (0.11) 1.36 (0.25) 1.70 (0.80)

ZC
Spring 0.41 (0.28) 1.41 (1.36) 2.07 (1.85)
Winter 0.34 (0.30) 0.94 (0.94) 1.60 (1.07)
Autumn 0.48 (0.38) 0.96 (1.17) 1.28 (1.52)

Supercritical regime, τC excluded during training

Model Start/lead 3 months 6 months 9 months

RC
Spring 0.67 (0.07) 1.30 (0.23) 1.65 (0.52)
Winter 0.68 (0.11) 1.27 (0.29) 1.72 (0.58)
Autumn 0.68 (0.12) 1.23 (0.14) 1.70 (0.41)

ZC
Spring 0.41 (0.28) 1.41 (1.36) 2.07 (1.85)
Winter 0.34 (0.30) 0.94 (0.94) 1.60 (1.07)
Autumn 0.48 (0.38) 0.96 (1.17) 1.28 (1.52)

Bold: forecast crosses the SPB. Italic: forecast does not cross the SPB.
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Figure D2. Distribution of the ZC model’s CNOPs for positive, negative, and neutral eastern Pacific SSTA initial conditions. Panels (a) and
(b) (top row) show the CNOPs obtained for the NINO3 index at a 3-month lead time comparing subcritical and supercritical regimes, while
panels (c) and (d) (bottom row) show the CNOPs obtained for hE +hW , the sum of the thermocline anomalies in the eastern and western
Pacific at a lead time of 9 months. In the supercritical regime, positive, negative, and neutral eastern Pacific SSTA initial conditions are
defined as NINO3≥ 0.2, NINO3≤−0.2, and −0.2< NINO3< 0.2, respectively. In the subcritical regime, positive, negative, and neutral
SSTA initial conditions are defined as NINO3≥ 0.1, NINO3≤−0.1, and −0.1≤ NINO3< 0.1, respectively. In every case, the months
of March, April, and May (spring season) from the last 50 years of the synthetic data used for testing (see Sect. 3.1) are taken as initial
conditions, yielding a total of 150 initial conditions considered.
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Figure D3. Distribution of the RC model’s CNOPs for positive, negative, and neutral eastern Pacific SSTA initial conditions. Panels (a) and
(b) (top row) display the CNOPs for the NINO3 index at a 9-month lead time under the subcritical regime with and without τC included during
training. Panels (c) and (d) (bottom row) show the CNOPs for the supercritical regime, also at a 9-month lead time, with τC either included
or excluded. In the supercritical regime, positive, negative, and neutral initial conditions are defined as NINO3≥ 0.2, NINO3≤−0.2,
and −0.2< NINO3< 0.2, respectively. In the subcritical regime, positive, negative, and neutral SSTA initial conditions are defined as
NINO3≥ 0.1, NINO3≤−0.1, and −0.1≤ NINO3< 0.1, respectively. In every case, the months of March, April, and May (spring season)
from the last 50 years of the synthetic data used for testing (see Sect. 3.1) are taken as initial conditions, yielding a total of 150 initial
conditions considered.
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