Articles | Volume 31, issue 4
https://doi.org/10.5194/npg-31-463-2024
https://doi.org/10.5194/npg-31-463-2024
Research article
 | 
08 Oct 2024
Research article |  | 08 Oct 2024

A comparison of two nonlinear data assimilation methods

Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Quantum data assimilation: a new approach to solving data assimilation on quantum annealers
Shunji Kotsuki, Fumitoshi Kawasaki, and Masanao Ohashi
Nonlin. Processes Geophys., 31, 237–245, https://doi.org/10.5194/npg-31-237-2024,https://doi.org/10.5194/npg-31-237-2024, 2024
Short summary
Comparative study of strongly and weakly coupled data assimilation with a global land–atmosphere coupled model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
Nonlin. Processes Geophys., 30, 457–479, https://doi.org/10.5194/npg-30-457-2023,https://doi.org/10.5194/npg-30-457-2023, 2023
Short summary
Reducing manipulations in a control simulation experiment based on instability vectors with the Lorenz-63 model
Mao Ouyang, Keita Tokuda, and Shunji Kotsuki
Nonlin. Processes Geophys., 30, 183–193, https://doi.org/10.5194/npg-30-183-2023,https://doi.org/10.5194/npg-30-183-2023, 2023
Short summary
Control simulation experiments of extreme events with the Lorenz-96 model
Qiwen Sun, Takemasa Miyoshi, and Serge Richard
Nonlin. Processes Geophys., 30, 117–128, https://doi.org/10.5194/npg-30-117-2023,https://doi.org/10.5194/npg-30-117-2023, 2023
Short summary

Cited articles

Auroux, D. and Blum, J.: Back and forth nudging algorithm for data assimilation problems, C. R. Math., 340, 873–878, https://doi.org/10.1016/j.crma.2005.05.006, 2005. a, b
Auroux, D. and Blum, J.: A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm, Nonlin. Processes Geophys., 15, 305–319, https://doi.org/10.5194/npg-15-305-2008, 2008. a, b, c
Auroux, D. and Nodet, M.: The back and forth nudging algorithm for data assimilation problems : Theoretical results on transport equations, ESAIM: Control Optim. Calc. Var., 18, 318–342, https://doi.org/10.1051/cocv/2011004, 2011. a, b
Auroux, D., Blum, J., and Nodet, M.: Diffusive back and forth nudging algorithm for data assimilation, C. R. Math., 349, 849–854, https://doi.org/10.1016/j.crma.2011.07.004, 2011. a
Azouani, A., Olson, E., and Titi, E. S.: Continuous data assimilation using general interpolant observables, J. Nonlin. Sci., 24, 277–304, https://doi.org/10.1007/s00332-013-9189-y, 2013. a, b
Download
Short summary
Advanced data assimilation methods are complex and computationally expensive. We compare two simpler methods, diffusive back-and-forth nudging and concave–convex nonlinearity, which account for change over time with the potential of providing accurate results with a reduced computational cost. We evaluate the accuracy of the two methods by implementing them within simple chaotic models. We conclude that the length and frequency of observations impact which method is better suited for a problem.