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Abstract. Advanced numerical data assimilation (DA) methods, such as the four-dimensional variational
(4DVAR) method, are elaborate and computationally expensive. Simpler methods exist that take time variabil-
ity into account, providing the potential of accurate results with a reduced computational cost. Recently, two
of these DA methods were proposed for a nonlinear ocean model, an implementation which is costly in time
and expertise, developing the need to first evaluate a simpler comparison between these two nonlinear methods.
The first method is diffusive back-and-forth nudging (D-BFN), which has previously been implemented in sev-
eral complex models, most specifically an ocean model. The second is the concave–convex nonlinearity (CCN)
method that has a straightforward implementation and promising results with a toy model. D-BFN is less costly
than a traditional variational DA system but requires an iterative implementation of equations that integrate the
nonlinear model forward and backward in time, whereas CCN only requires integration of the nonlinear model
forward in time. This paper investigates if the CCN algorithm can provide competitive results with the already
tested D-BFN within simple chaotic models. Results show that observation density and/or frequency, as well as
the length of the experiment window, significantly impacts the results for CCN, whereas D-BFN is fairly robust
to sparser observations, predominately in time.

1 Introduction

Data assimilation (DA) methods are often categorized into
a class or type of method, primarily for purposes such as
comparison or evaluation of methods with similar character-
istics. Multiple possibilities exist for defining or separating
DA methods into a specific class, and several methods belong
to more than one class. For the intentions of this paper and
the following discussion, we have chosen to classify them as
two types: sequential and non-sequential.

Sequential methods compute a DA analysis at a selected
time (called the analysis time), given a model background
(or forecast) and data collected during a period of time
(observation window) up to the analysis time. Commonly
used sequential methods include the three-dimensional vari-
ational (3DVAR) (Barker et al., 2004; Daley and Barker,
2001; Lorenc, 1981; Lorenc et al., 2000), the Kalman fil-

ter (Kalman, 1960), and the ensemble Kalman filter (EnKF)
(Evensen, 1994), along with its many variants. Intermittent
sequential methods assume that all the data within the ob-
servation window are collected and valid at the analysis
time. Although this assumption may be warranted for slowly
evolving processes and short observation windows, it has the
undesirable effect of assimilating observations at the wrong
time and suppressing the time variability in the observations
(if multiple observations are collected at the same location
within the observation window, only one of them will be as-
similated). Some sequential methods are implemented con-
tinuously, allowing observations to be assimilated as they
are available. This approach reduces the suppression of time
variability by more accurately assimilating the observations
at the appropriate time.
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Non-sequential methods on the other hand assimilate all
observations collected within the observation window at their
respective time and provide a correction to the entire model
trajectory over the assimilation window. Note that it is possi-
ble for the window length to differ between the assimilation
window and the observation window (Cummings, 2005; Car-
ton et al., 2000). The former refers to the time window over
which a correction to the model is computed, while the lat-
ter refers to the time window over which observations are
collected/considered for assimilation. Non-sequential meth-
ods do not have the problem of neglecting observations col-
lected at the same location and different times, which means
they do account for the time variability in the observations.
However, they are computationally much more expensive
than the sequential approach. There are a few known non-
sequential methods such as the four-dimensional variational
(4DVAR) (Fairbairn et al., 2013; Le Dimet and Talagrand,
1986), the Kalman smoother (Bennett and Budgell, 1989),
and the ensemble Kalman smoother (EnKS) (Evensen and
Van Leeuwen, 2000). Of these three, 4DVAR is considered
one of the leading state-of-the-art approaches for problems in
geosciences. It does, however, require the development of a
tangent linear and adjoint model of the dynamical model be-
ing used, which is both cumbersome and tedious and requires
regular maintenance as the base model undergoes continued
development.

Auroux and Blum proposed a non-sequential method
called back-and-forth nudging (BFN) (Auroux and Blum,
2005, 2008; Auroux and Nodet, 2011). It consists of nudging
the model to the observations in both the forward and back-
ward (in time) integrations. In the BFN method the backward
integration of the model resembles the adjoint in the 4DVAR
method, but it is less cumbersome to develop. A few stud-
ies have shown that BFN compares well with 4DVAR: (i) it
tends to provide similar accuracy (Auroux and Blum, 2008),
and (ii) it is less expensive in two ways: the backward inte-
gration of the nonlinear model costs less than the adjoint in-
tegration, and the method converges in fewer iterations than
the 4DVAR. There is a legitimate quest for computationally
inexpensive DA methods that account for the time variability
in the observations.

Continuous sequential DA methods are computationally
inexpensive (because no backward model integration is
needed as in the 4DVAR or the BFN methods), and they
do account for the time variability in the observations which
are continuously assimilated into the forward model as they
become available. One example comes from Azouani et al.
(2013) (AOT), who proposed a DA method designed to as-
similate observations continuously over time, and instead of
assimilating measurements directly into the model, the AOT
method introduces a feedback term, like a nudging term,
into the model equations to penalize deviations of the model
from the observed data. Larios and Pei (2018) introduced
three variations of a continuous sequential DA method de-
rived from linear AOT that, when applied to the Kuramoto–

Sivashinsky equation, showed increasing potential for con-
vergence depending on the form of the model–data relaxation
term. The ease of implementation and the potential for con-
vergence of this method make it attractive for other applica-
tions. The most promising of these was their concave–convex
nonlinearity (CCN) method, which is evaluated within in this
paper. The concept for a comparison between this sequen-
tial method and the previous non-sequential method evolved
from the ability to implement BFN as a continuous assimila-
tion.

This study compares the BFN and CCN methods using the
Lorenz models (Lorenz, 1963, 1996, 2005, 2006; Lorenz and
Emanuel, 1998; Baines, 2008). The former has been applied
to various models including a complex ocean model (Rug-
giero et al., 2015), but it is costly compared to continuous se-
quential DA methods. The latter is less expensive but has not
yet been implemented with more complex or chaotic systems
to our knowledge. Before attempting an implementation of
the CCN method with a complex ocean model, we first com-
pare its accuracy against the BFN method using three chaotic
Lorenz systems. These models provide similar chaos that one
would see within an ocean or atmospheric model and have
been shown to be an excellent source for evaluating and test-
ing new DA methods (Ngodock et al., 2007). We do note that
the Kuramoto–Sivashinsky equation is also a chaotic model,
but it is not as widely used as a test bed for DA methods as
the Lorenz models. The results in this paper assess if (i) CCN
will converge for a shorter time window with these increas-
ingly complex and chaotic models, (ii) if the results can still
be achieved with sparse observations, and (iii) if the func-
tional nudging term in CCN sufficiently corrects the model
without the iterations of a backward correction as in BFN.

The outline of the paper is as follows. In Sect. 2, the BFN
and CCN methods are introduced. Section 3 presents the
three Lorenz models of increasing complexity used for test-
ing the two methods. Section 4 contains the model initial-
ization and setup for the true model, which is used for ob-
servation sampling and evaluation of experiments, as well as
results from preliminary testing for the choice of the nudging
coefficient. In Sect. 5, the details of the DA experiments for
each model are discussed, and results are presented. Lastly,
Sect. 6 contains the conclusion of the experiments.

2 Methods

In this section, we discuss the two simpler methods that are
compared in this paper. These methods are only briefly pre-
sented here, and we refer the reader to the cited references
for more details. We note that both the BFN and AOT meth-
ods are based on the well-known nudging algorithm (Hoke
and Anthes, 1976).
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2.1 Diffusive back-and-forth nudging (D-BFN) method

We start with a simple description of the back-and-forth
nudging (BFN) method proposed by Auroux and Blum
(2005, 2008), Auroux and Nodet (2011). The BFN method,
like nudging, corrects the trajectory as the model is integrated
forward in time. The addition in BFN, compared to nudging,
is using the state at the end of the assimilation window to
initialize the backward model, which has its own nudging
term. It forces the model closer to the observations as it in-
tegrates back in time, allowing corrections up to the initial
conditions. The adjusted initial condition is then used to ini-
tialize the integration of the forward model again, and this
process is repeated for either a chosen number of iterations
or until a set convergence criterion is reached. Auroux and
Blum then introduced the diffusive back-and-forth nudging
(D-BFN) (Auroux et al., 2011) method, which has the same
underlying methods of BFN but with added control of the dif-
fusive term, allowing a stable backwards integration. The D-
BFN algorithm is described below, using a dynamical model
in continuous form:

∂tX =M(X)+ v1X, 0< t < T, (1)

with the initial condition X(0)= x0, where M is the model
operator and v is the diffusion coefficient. In the dynamical
system above, the diffusive term has been separated from the
model operator. We leave the reader with the remark that if
there is no diffusion, D-BFN reduces to the original BFN
method. The D-BFN method is as follows. For k ≥ 1,{
∂tXk =M(Xk)+ v1Xk +K(Xobs−H(Xk)),

Xk(0)= X̃k−1(0), 0< t < T,
(2){

∂t X̃k =M(X̃k)− v1X̃k −K′(Xobs−H(X̃k)),

X̃k(T )=Xk(T ), T < t < 0,
(3)

where X(t) is the state vector with the initial condition
X(0)= x0; K/K′ is the feedback or nudging coefficient; and
H is the observation operator, which allows for comparison
of the observations,Xobs, with the corresponding model state
at the observation locations, H(X(t)). For D-BFN, as op-
posed to BFN, the opposite sign of the diffusive coefficient
is used to stabilize the backwards model. The nudging co-
efficients K and K′ can have the same or different magni-
tudes where the equations determine the opposite signs for
the nudging terms. For the cases that the non-diffusive por-
tion of the model can be reversed, the backward nudging
equation can be rewritten for t ′ = T − t :{
∂t ′X̃k =−M(X̃k)+ v1X̃k +K′(Xobs−H(X̃k)),
X̃k(t ′ = 0)=Xk(T ),

(4)

where the backward model state, X̃, is evaluated at time t ′.
There is a case in which it is reasonable for K=K′ and is
of interest for geophysical processes. While this slightly dif-
ferent algorithm was implemented and tested, the original D-
BFN algorithms were used for the purposes of this paper.

2.2 Concave–convex nonlinearity (CCN) method

The method being compared is one of three methods pro-
posed by Larios and Pei (2018). All three methods are based
on modifications of the linear AOT method (Azouani et al.,
2013), which uses a linear feedback term within the model
equations to correct the deviations from the observations.
These three new continuous DA methods proposed by Lar-
ios and Pei (2018) provide different nonlinear modifications
of this linear feedback term. The first approach uses an over-
all nonlinear adaption that modifies the feedback term to be a
nonlinear function of the error. While this method had faster
convergence, it retained higher errors for short periods of
time. This led them to introduce a hybrid of the two, the
hybrid linear–nonlinear method that strongly corrects devi-
ations for small errors using the nonlinear feedback term and
keeps the linear feedback term as in the linear AOT algorithm
for large errors. The success of this method inspired Larios
and Pei to take it a step further and exploit the feedback term,
proposing the third method, the concave–convex nonlinear-
ity (CCN) method, which implements nonlinearity for both
small and large errors using the previous nonlinear feedback
term for the small errors and introducing another nonlinear
feedback term for the large errors. This method converged
faster and had smaller errors when compared to the previous
two methods and AOT. This last method is the one shown
below and used for comparison in this paper.

We start with the same representation of a time continuous
model as in Eq. (1), except the diffusive term is no longer
required to be separated:

∂tX =M(X), 0< t < T .

We then add the feedback or correction term, where linear
AOT would use a real scalar constant η:

∂tX =M(X)+ η(Xobs−H(X)), (5)

and CCN modifies η to be nonlinear functions dependent on
the magnitude of the error (x), for 0< γ < 1,

η(x)=

{
x|x|γ , |x| ≥ 1,
x|x|−γ , 0< |x|< 1,
0, x = 0.

(6)

This nonlinear DA method seems straightforward to imple-
ment with a high convergence rate and only a forward inte-
gration of the model. It is similar to BFN in that it uses a
nudging term to correct the model towards the observations
during the integration of the forward model. The results from
their paper with the Kuramoto–Sivashinsky equation model
look promising, but it is important to note that the reference
of fast convergence was in comparison to AOT. The CCN
algorithm took roughly 17 time units for convergence, com-
pared to the 50 time units for AOT. These results also used a
very dense set of observations.
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3 Models

This section presents the three models for which the exper-
iments with the proposed methods will be tested. Each of
the well-known Lorenz models (Lorenz 63, Lorenz 96, and
Lorenz 05) has been consistently used to test new DA meth-
ods.

The first model is the three-component Lorenz (1963)
model:

dx
dt
= σ (y− x)

dy
dt
= x(ρ− z)− y

dz
dt
= xy−βz.

(7)

The three components (x, y, and z) represent the amplitudes
of velocity, the temperature, and the horizontally averaged
temperature, respectively (Baines, 2008). The equations also
contain three constant parameters that are set to commonly
used values known to cause chaos: σ = 10, β = 8/3, and ρ =
28.

The second model is the Lorenz (1996) model, published
in Lorenz (2006) and Lorenz and Emanuel (1998). The
Lorenz 96 is a more complex one-dimensional model for the
variables or grid points X1, . . .,XN . These can be viewed as
values of an unspecified oceanographic quantity such as tem-
perature or salinity. The model equations are

dXi
dt
= (Xi+1−Xi−2)Xi−1−Xi +F, (8)

for i = 1, . . .,N , with the constraint of N ≥ 4 and the as-
sumption of cyclic boundary conditions. In Eq. (8), −Xi is
the diffusive term, F is the forcing constant set to the value
of 8 to ensure chaotic behavior, and N = 40 is a frequently
used quantity for the number of variables.

The third model is the Lorenz (2005) model, a one-
dimensional model containing grid points, X1, . . .,XN ,
which can also be considered geographical site locations of
some general oceanographic measurement. For N ≥ 4 and a
value L(L�N ), the model equations are

dXn
dt
= [X,X]L,n−Xn+F, (9)

for n= 1, . . .,N , where [X,X]L,n is the advection term de-
fined by

[X,Y ]L,n =
1
L2

J∑
j=−J

J∑
i=−J

(−Xn−2L−iYn−L−j +Xn−L+j−iYn+L+j ). (10)

In this model, −Xn is the diffusive term; F is the chosen
forcing term; andL is a selected smoothing parameter, where
J = L/2 if L is even or J = (L− 1)/2 if L is odd. It has the

Figure 1. Model initialization and setup for experiments. Note that
the initial conditions for the DA experiments and the true model
state are not equal. The true model state is also referred to as the
truth.

same cyclic boundary conditions as the Lorenz 96 model.
The parameters used in this paper are F = 10 to cause chaos;
N = 240 for the number of grid points; and L= 8, which is
a commonly used value for smoothing. This model can also
be rewritten as a summation of weights. For the purposes of
this paper, the original equations were implemented.

4 Model initialization and preliminary testing

In this section, we will first discuss how the experiments are
set up for each of the three models. We will then present re-
sults from preliminary testing to establish how the values of
the nudging coefficients were chosen for the experiments fol-
lowing. Before performing any experiments, each model re-
quires initialization and a period of forward integration to
remove any transient behavior (Lorenz, 2005; Lorenz and
Emanuel, 1998), also referred to as the model spinup. Each
model follows the experiment setup scheme shown in Fig. 1,
and the lengths of time for each model spinup are shown in
Table 1.

The models are first initialized with a uniform random
distribution between 0 and 1 and integrated forward using
a fourth-order Runge–Kutta (RK4) time-stepping algorithm
(Lambers et al., 2021), where the size of the time step is
model dependent and shown for each model in Table 1. Fol-
lowing the outline in Fig. 1, the model state of the spinup
after 1 year (9 years for Lorenz 05) is used as the initial con-
dition for the DA model experiments. The model spinup con-
tinues for an additional 8 months to provide an initial condi-
tion for the true model. This continued time of spinup is to
ensure that the two initial conditions are not equal, which is
verified within the following sections. The true model, also
referred to as the truth, is integrated forward without any as-
similation for a period of 4 months and is used for sampling
observations and evaluating the accuracy of the experiments
for each DA method.
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The unit of time used within this paper follows from
Lorenz (1996, 2005) and Lorenz and Emanuel (1998), which
state that one unit of time is approximately 5 d for the Lorenz
96 and Lorenz 05 models. Lorenz (1963) states that the
Lorenz 63 model uses a dimensionless time increment. We
note that there are underlying variables within the Lorenz 63
model that can be used to calculate a specific unit of time but
are based on values of the materials used within an experi-
ment; an example of this calculation is shown in Ngodock
et al. (2009). For the purposes of this paper and to reduce
confusion between units of time within the following results,
we have made the assumption that a time unit for all three
models corresponds to 5 d.

4.1 Lorenz 63 model initialization

The Lorenz 63 model (Eq. 7) is integrated forward, with
a time step of approximately 6 min (or 1t = 1/1000 time
unit). As shown in Fig. 1 and Table 1, the model state af-
ter a 1-year spinup is used as the initial condition for the DA
model experiments, and the model state after 1 year and 8
months of the spinup is used as the initial condition for the
true model.

First, we verify that the true model, shown in Fig. 2(a),
uses an appropriate length of time and produces the rota-
tion between the two wings of the Lorenz attractors. This
forecast is referred to as the truth and is used for obser-
vation sampling and evaluating the experiments. Next, we
note that the two initial conditions (x,y,z) are in fact, not
equivalent. The initial condition for the DA experiments was
(2.2731,2.9968,17.2231), and the initial condition for the
truth was (−12.0355,−15.7630,26.9678). Lastly, we vali-
date that the forecasts produced by these two initial condi-
tions do not converge. The 2-month forecasts with no assim-
ilation are shown in Fig. 2b for each variable, x (top), y (mid-
dle), and z (bottom).

4.2 Lorenz 96 model initialization

The Lorenz 96 model (Eq. 8) uses a constant forcing of
F = 8 and is integrated forward using a 6 h time step (or
1t = 1/20 time unit). The model setup is parallel to the pre-
vious model, as shown in Fig. 1, where the model state after
a 1-year spinup is used as the initial condition for the DA ex-
periments, and the model state after 1 year and 8 months of
the spinup is used as the initial condition for the true model.

These initial conditions are presented in Fig. 3a to confirm
that they are different. Figure 3b shows the 4-month forecast
for the true model, referred to as the truth, and verifies the
length of spinup and choice of forcing produced a chaotic
system. The truth is used for sampling observations and val-
idating results from the experiments. Lastly, we validate that
the initial conditions produce separate forecasts. Figure 3c
represents the error between the truth and the no-assimilation
forecast using the initial condition for the DA experiments.

Figure 2. Lorenz 63 model. (a) The 4-month forecast of the true
model, referred to as the truth. (b) The 2-month forecasts with no
assimilation for each variable x (top), y (middle), and z (bottom).
The teal line shows the truth, “true FC”, or the forecast using the
initial condition for the true model, whereas the orange line shows
the no-assimilation forecast using the initial condition for the DA
experiments, “no DA FC”.

The magnitude of the errors verifies that the two forecasts do
not converge.

4.3 Lorenz 2005 model initialization

The Lorenz 05 model (Eqs. 9 and 10) uses a constant forcing
of F = 10 to ensure chaos and an even number L= 8 and is
integrated forward with a time step of approximately 3 h (or
1t = 1/40 time unit). This model setup is similar to the pre-
vious two models with the exception of the length of time for
the model spinup. Table 1 and Fig. 1 show this model has a
9-year spinup, where the final model state is used as the ini-
tial condition for the DA experiments. The spinup continues
for an additional 8 months to provide the initial condition for
the true model which is the final model state of the spinup
after 9 years and 8 months.
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Table 1. Initialization and experiment parameters for each model.

Experiment model setup

Model Time step algorithm Time step size Spinup time (DA IC) Spinup time (truth IC)

Lorenz 63 RK4 1t = 1/1000≈ 6 min 1 year 1 year 8 months

Lorenz 96 RK4 1t = 1/20≈ 6 h 1 year 1 year 8 months

Lorenz 05 RK4 1t = 1/40≈ 3 h 9 years 9 years 8 months

Figure 3. Lorenz 96 model. (a) The teal line shows the initial
condition for the true model state, “truth IC”, whereas the orange
line shows the initial condition for the DA experiments, “DA IC”.
(b) The 4-month forecast of the true model, referred to as the truth.
(c) Difference between a 4-month no-assimilation forecast of the
DA IC and the truth.

These initial conditions are not equal and are shown in
Fig. 4a. A 4-month forecast of the true model is shown in
Fig. 4b, which validates the choice of forcing term and con-
firms that the length of spinup removed any transient ef-
fects. This forecast is referred to as the truth and is used for
sampling observations and evaluating the results between the
two methods. Finally, we present the error between the true
model forecast and a no-assimilation forecast of the initial

Figure 4. Lorenz 05 model. (a) The teal line shows the initial con-
dition for the true model state, truth IC, whereas the orange line
shows the initial condition for the DA experiments, DA IC. (b) The
4-month forecast of the true model, referred to as the truth. (c) Dif-
ference between a 4-month no-assimilation forecast of the DA IC
and the truth.

condition for the DA experiments in Fig. 4c, which verifies
that the two initial conditions do not converge.

4.4 Preliminary testing

In order to best compare the two methods, we first completed
preliminary testing to choose a value for the nudging coeffi-
cients for each model. The two DA methods, D-BFN and
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Figure 5. Preliminary testing results of the Lorenz 05 model that
assimilated 1 month of full observations for (a) D-BFN with the
values K = 1, 5, and 25 and (b) CCN with the values γ = 0.1, 0.5,
and 0.9.

CCN, were implemented for several lengths of time, ranging
from 5 d to 2 months. Each experiment was given a set of
full observations at all grid points and every time step. The
mean absolute error (MAE; 1

N

∑N
i=1|yi − xi |) was computed

over time to reflect how well the nudging terms were correct-
ing the models. Several values were tested for each nudging
term: 1≤ |K| ≤ 75 and 0< γ < 1.

While we evaluated this preliminary testing for each
model and a range of parameters, we only present the two
examples shown in Fig. 5 so as to not cloud the paper
with repetitive figures. The results shown are the errors as
the Lorenz 05 model assimilates all observations over a 1-
month period. Figure 5a represents the error for D-BFN over
three iterations of back-and-forth nudging, where the value
K = 25 maintained the lowest overall error. Figure 5b shows
the error for CCN where the value γ = 0.9 reduces and main-
tains this lower error around day 10.

We remind the readers that CCN is a continuous method
that corrects through forward integration only, which ex-
plains why this method will have higher errors at the begin-
ning of the window and might need a longer time to reduce
the error. Similar results were obtained for each model in our
preliminary testing, and so we proceed with using the values
K = 25 for D-BFN and γ = 0.9 for CCN for the following
experiments and their results shown in this paper.

5 Data assimilation experiments: setup and results

For each model subsection, we start with briefly discussing
the individual model parameters used for the following ex-
periments. We then proceed with details of the DA experi-
ments, such as the length of the DA period and the frequency
in which observations are assimilated, and discuss the results
shown in the tables and figures presented for each model.

Within this section, several experiments are carried out
with different lengths of DA experiment periods. Each fore-
cast is presented for the same length of time as the corre-
sponding DA experiment window. The observations assim-
ilated in these experiments are sampled from the truth for
each model. We remind the reader of the results from the
preliminary testing in the previous section, where the values
K = 25 for D-BFN and γ = 0.9 for CCN are used for all re-
sults shown in this study.

The first set of experiments for each model assimilates ob-
servations at all grid points for every time step and is re-
ferred to as the “ALL OBS” experiments. The tables pre-
sented within this section include shorthand names for other
experiments, where the first number represents the spacing
between grid points and the second number represents the
time between time steps. For example, the experiment “3GP-
2TS” assimilated observations at every three grid points for
every two time steps. The results shown in the tables are the
mean absolute error (MAE) averaged over time. The columns
separate the errors between the DA experiment periods and
the forecast periods.

The results shown in the figures within this section contain
the errors for each DA experiment evaluated against the truth
and are presented in the following manner:

i. Experiment results for D-BFN are presented in the top
row of each figure (panels a and c), while experiment
results for CCN are presented in the bottom row of each
figure (panels b and d).

ii. The error for the DA experiment period is shown in the
left half of the panel, while the error of the forecast (FC)
is shown in the right half of the panel. This distinction
is shown by color in the results for Lorenz 63 and is
separated by a vertical line for all remaining figures.

5.1 Lorenz 63 model

The first set of experiments is carried out with the three-
component Lorenz 63 model (Eq. 7). All experiments have
the same parameters of σ = 10,β = 8

3 , and ρ = 28 with a
time step of approximately 6 min (1t = 1/1000).

The first setup starts with shorter DA experiment periods
of 5 and 10 d, paired with their 5 and 10 d forecasts, re-
spectively. For the best results possible, observations were
brought in at all grid points for every time step (ALL OBS).
Table 2 shows the MAE of the DA period and the forecast
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Figure 6. Error plots for Lorenz 63 ALL OBS experiments evaluated against the truth for each variable, x (solid line), y (dashed line), and z
(dotted line). Blue denotes the DA error, while green denotes the FC error. The left column (a, b) shows results for 1-month DA and 1-month
FC for (a) D-BFN and (b) CCN. The right column (c, d) shows results for 2-month DA and 2-month FC for (c) D-BFN and (d) CCN.

period (FC) for both methods, D-BFN and CCN. While D-
BFN does well with a short experiment window, CCN does
not have an adequate amount of time for corrections to make
an impact on the DA error.

The experiment window was then extended to 1 and 2
months for the DA period and FC period. The results are
shown in Table 2, as well as Fig. 6. While CCN shows higher
MAE for not having a long enough time window to reduce er-
rors, the forecast MAE is on par with D-BFN for the 1-month
forecast and slightly better than D-BFN for the 2-month fore-
cast. Figure 6c and d show that CCN has better accuracy in
the forecast for several days longer than D-BFN when given
sufficient time to make corrections.

Further experiments were done in the case when all obser-
vations are not available. The “1GP-2TS” experiment shown
in Table 2 brings in observations at all grid points but now
every other time step. These were only performed for the
longer experiment windows of 1 and 2 months. D-BFN still
provided high accuracy with fewer observations in time, but
CCN was not able to make a suitable correction within this
time window. Several factors play a role in this outcome start-
ing with internal factors of D-BFN, namely the backwards in-
tegration of the model and the iterations. The backwards inte-
gration helps propagate the correction from the nudging term

further into the model domain, an ability that is not present
in CCN. It can also be seen in Fig. 5 that the rate in which
corrections are made imply that D-BFN has a stronger nudg-
ing term compared to CCN. It is possible that if a longer time
window were considered, CCN would produce lower errors
for the DA run and the forecast. It was shown in the orig-
inal paper that it took approximately 17 time units to con-
verge with the Kuramoto–Sivashinsky equation, and these
experiments are 6 time units (1 month) and 12 time units (2
months).

The results above confirmed that a longer time window is
still needed with these models in order for CCN to converge.
Therefore, the next two models will only use the longer ex-
periment window. For the following experiments, the two
lengths of assimilation considered are 1 and 2 months fol-
lowed by their respective forecast.

5.2 Lorenz 96 model

All numerical experiments for Lorenz 96 (Eq. 8) use the fol-
lowing parameters: N = 40 grid points, F = 8, and a time
step of approximately 6 h (1t = 1/20).

The first set of experiments with this model uses observa-
tions at all grid points and all time steps (ALL OBS). The
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Table 2. Table of DA experiments. Observations used are as follows: ALL OBS is all observations (every 6 min), and 1GP-2TS is all grid
points, every other time step (every 12 min). 1m and 2m represent 1 month and 2 months, respectively. DA is the experiment window for data
assimilation, and FC is the forecast window. Values shown are the MAE.

Lorenz 63 model

Observations DA method 5 d DA 5 d FC 10 d DA 10 d FC

ALL OBS
D-BFN (K = 25) 0.0221 0.0225 0.0224 0.0279
CCN (γ = 0.9) 3.1663 3.3081 2.2818 6.8962

1m DA 1m FC 2m DA 2m FC

ALL OBS
D-BFN (K = 25) 0.0247 0.0254 0.0254 0.1766
CCN (γ = 0.9) 1.2605 0.0256 0.6434 0.0591

1GP-2TS
D-BFN (K = 25) 0.0317 0.0255 0.0508 0.0924
CCN (γ = 0.9) 7.9482 6.4443 8.0473 10.2191

Table 3. Table of DA experiments. Observations used are as follows: ALL OBS is all observations (every 6 h), and 1GP-2TS is all grid
points, every other time step (every 12 h). 1m and 2m represent 1 month and 2 months, respectively. DA is the window for data assimilation,
and FC is the forecast window. Values shown are the time-averaged MAE.

Lorenz 96 model

Observations DA method 1m DA 1m FC 2m DA 2m FC

ALL OBS
D-BFN (K = 25) 0.4006 1.8820 0.4036 3.6572
CCN (γ = 0.9) 0.7620 1.5284 0.5581 3.1434

1GP-2TS
D-BFN (K = 25) 0.4062 1.8197 0.4075 3.4985
CCN (γ = 0.9) 1.9662 3.6858 1.6443 3.8755

time-averaged MAE is shown in Table 3; CCN produces a
slightly better forecast than D-BFN. Of course, CCN has
a higher error for DA since it only corrects in the forward
model. Figure 7a and c show how long the forecast is ac-
curate for the 1-month experiment, which is around 12–15 d
for both methods. Figure 7c and d contain the results for the
2-month experiment, showing that the accuracy in the fore-
cast for D-BFN has decreased to around 5 d, whereas CCN is
consistent in accuracy for about 12–15 d.

The next set of experiments brought in observations at all
grid points and every other time step (1GP-2TS). Figure 8
shows the error between the truth and each method along
with their forecast. D-BFN produces similar results as com-
pared to assimilating all observations. CCN, however, does
not make much of a correction during assimilation, which in
return does not produce a usable forecast. We would hypoth-
esize that CCN needs a much longer assimilation window
to account for not having a full observation set. We carried
out experiments with smaller and slightly higher values for
γ , but the resulting assimilation and forecast errors did not
improve (results not shown).

A few other experiments were performed to test the ca-
pabilities of these methods with sparse observations. All of
these were completed with the 2-month experiment window.
Observations were assimilated less frequently in time, from

Table 4. A variety of other experiments testing the sparsity of ob-
servations. The first number represents the spacing between grid
points, whereas the second represents the time between time steps.
For example, 3GP-2TS denotes observations brought in at every
three grid points and every two time steps. Recall that one time
step is equal to 6 h for this model, so every two time steps would be
every 12 h. Values shown are the time-averaged MAE.

Lorenz 96 model

Observations DA method 1m DA 1m FC

1GP-5TS
D-BFN (K = 25) 0.4255 3.2234
CCN (γ = 0.9) 2.6634 4.1855

1GP-10TS
D-BFN (K = 25) 0.5181 3.5457
CCN (γ = 0.9) 3.0572 4.2346

1GP-20TS
D-BFN (K = 25) 1.8630 4.1870
CCN (γ = 0.9) 3.7072 4.2537

2GP-2TS
D-BFN (K = 25) 0.9046 3.7016
CCN (γ = 0.9) 2.6375 4.1872

3GP-2TS
D-BFN (K = 25) 1.7059 3.9207
CCN (γ = 0.9) 3.0278 4.3588

4GP-3TS
D-BFN (K = 25) 2.1865 3.9240
CCN (γ = 0.9) 3.3608 4.0710
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Figure 7. Error plots for Lorenz 96 ALL OBS experiments evaluated against the truth. The left column (a, b) shows results for 1-month DA
and 1-month FC for (a) D-BFN and (b) CCN. The right column (c, d) shows results for 2-month DA and 2-month FC for (c) D-BFN and (d)
CCN.

Figure 8. Error plots for Lorenz 96 1GP-2TS experiments evaluated against the truth. The left column (a, b) shows results for 1-month DA
and 1-month FC for (a) D-BFN and (b) CCN. The right column (c, d) shows results for 2-month DA and 2-month FC for (c) D-BFN and
(d) CCN.
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Figure 9. Error plots for Lorenz 05 ALL OBS experiments evaluated against the truth. The left column (a, b) shows results for 1-month DA
and 1-month FC for (a) D-BFN and (b) CCN. The right column (c, d) shows results for 2-month DA and 2-month FC for (c) D-BFN and
(d) CCN.

Figure 10. Error plots for Lorenz 05 1GP-2TS experiments evaluated against the truth. The left column (a, b) shows results for 1-month DA
and 1-month FC for (a) D-BFN and (b) CCN. The right column (c, d) shows results for 2-month DA and 2-month FC for (c) D-BFN and (d)
CCN.
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Table 5. Table of DA experiments. Observations used are as follows: ALL OBS is all observations (every 3 h), and 1GP-2TS is all grid
points, every other time step (every 6 h). 1m and 2m represent 1 month and 2 months, respectively. DA is the window for data assimilation,
and FC is the forecast window. Values shown are the time-averaged MAE.

Lorenz 05 model

Observations DA method 1m DA 1m FC 2m DA 2m FC

ALL OBS
D-BFN (K = 25) 0.1827 0.2480 0.1960 2.1770
CCN (γ = 0.9) 0.3984 0.1948 0.2246 2.1161

1GP-2TS
D-BFN (K = 25) 0.1861 0.2417 0.1977 1.9577
CCN (γ = 0.9) 0.8913 2.9029 0.5941 3.3410

Table 6. A variety of other experiments testing the sparsity of ob-
servations. The first number represents the spacing between grid
points, whereas the second represents the time between time steps.
For example, 3GP-2TS denotes observations brought in at every
three grid points and every two time steps. Recall that one time
step is equal to 6 h for this model, so every two time steps would be
every 12 h. Values shown are the time-averaged MAE.

Lorenz 05 model

Observations DA method 1m DA 1m FC

1GP-5TS
D-BFN (K = 25) 0.2095 1.5355
CCN (γ = 0.9) 2.2238 4.5812

1GP-20TS
D-BFN (K = 25) 0.3997 1.9565
CCN (γ = 0.9) 3.5654 4.3697

2GP-2TS
D-BFN (K = 25) 0.6533 3.7837
CCN (γ = 0.9) 2.3233 4.3569

3GP-2TS
D-BFN (K = 25) 1.0572 3.9058
CCN (γ = 0.9) 2.5416 4.3568

4GP-3TS
D-BFN (K = 25) 2.0827 4.2232
CCN (γ = 0.9) 3.6660 4.7131

every 5 (“1GP-5TS”) to every 10 (“1GP-10TS”) to every
20 (“1GP-20TS”) time steps. The results are displayed in
Table 4. The results for CCN are poor as it did not have
enough observations to make a correction in the forward
model. D-BFN has the benefit of propagating the observa-
tions back in time, correcting the initial conditions, and run-
ning the forward model again. This process allows D-BFN
to give a much better correction during the assimilation win-
dow. However, the forecast accuracy decreases with the fre-
quency of observations. The results for every five time steps
(every 30 h) are comparable to the results from all observa-
tions. The number of days of accuracy for the less frequent
observations drastically decreases as the number of observa-
tions decreases.

5.3 Lorenz 2005 model

The Lorenz 05 model (Eqs. 9 and 10) use the same param-
eters for all numerical experiments: 240 grid points (N ), an
even number L= 8, a forcing constant of 15 to ensure chaos
(F ), and a time step of approximately 3 h (1t = 1/40 time
unit). Recall that in Eqs. (9) and (10), one unit of time is
equivalent to 5 d.

The first set of experiments with this model uses obser-
vations at all times and space (ALL OBS) for 1- and 2-
month experiment windows. For this model, CCN has the
lowest forecast accuracy of all results for both the 1-month
and 2-month experiments. The forecast has high accuracy for
around 30 d, as seen in Fig. 9.

The second set of experiments uses all points in space and
assimilates them at every other time step (1GP-2TS). D-BFN
produces very similar results to those from the ALL OBS ex-
periment. Looking at the difference in results between the
1-month and 2-month experiments, the CCN method needs a
longer window to converge with the sparser set of observa-
tions, as seen in Fig. 10. Table 5 contains further details of
the time-averaged MAE for the first two sets of experiments.
The values in Table 5 are separated to show error contained
during the DA period and error maintained during the fore-
cast period.

D-BFN does well compared to CCN for observations that
are sparse in time. Table 6 shows the results for the 2-month
DA and FC experiments for observations brought in every
5 (1GP-5TS) and every 20 (1GP-20TS) time steps. The cor-
rection in the DA brings the error down to provide a decent
forecast. The error in the forecast is relatively low compared
to the errors in CCN, and the larger errors are towards the
end of the forecast period. The figure is not shown in this
paper, but both results have high accuracy for approximately
the first 30 d of the forecast.

6 Conclusions

Overall, each method has their own advantages and disad-
vantages. While D-BFN performs better with short windows
and sparse observations, it does require iterations of forward
and backward integrations of the model. This is not suitable
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for all cases, most importantly when a model cannot be in-
tegrated backwards. For some cases where the assimilation
window was long enough, the DA error at the end of the
window was lower from the CCN method than D-BFN, re-
sulting in a forecast that maintained accuracy longer in time.
Furthermore, CCN only requires the forward model, which
is useful for models that do not allow for a backwards in-
tegration and also makes this method more computationally
efficient.

We want to remember that a goal of this paper was to de-
termine the best method to apply to an ocean model. For this
reason, we do not want to implement a longer time window
as it is not practical for ocean DA. In terms of implementing
either method for an ocean model, based on the findings in
this paper, Auroux and Blum’s D-BFN method seems more
applicable to the assimilation window constraints and sparse
ocean observations available. However, the implementation
of CCN may be suitable for other scenarios with a long as-
similation in the ocean such as that done in reanalysis or as-
similations that start much further in the past.

The results from this paper led us to the conclusions above,
but we leave the reader with this final remark. While D-BFN
is able to retain accuracy for observations that are sparse in
time, due to the advantage of spreading these corrections
through the back-and-forth iterations, we observed that the
results from CCN decayed as the density and/or frequency
of observations was reduced. These results may partially be
due to the models not having strong dynamics capable of
propagating the corrections to other unobserved points in
space or time. However, for models with strong advection,
the corrected term may be able to disperse these corrections
to places where observations are not observed, which would
allow CCN to have a higher impact when adjusting the tra-
jectory from sparse observations.
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