Articles | Volume 31, issue 2
https://doi.org/10.5194/npg-31-237-2024
https://doi.org/10.5194/npg-31-237-2024
NPG Letters
 | 
07 Jun 2024
NPG Letters |  | 07 Jun 2024

Quantum data assimilation: a new approach to solving data assimilation on quantum annealers

Shunji Kotsuki, Fumitoshi Kawasaki, and Masanao Ohashi

Related authors

Estimating global precipitation fields from rain gauge observations using local ensemble data assimilation
Yuka Muto and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2024-960,https://doi.org/10.5194/egusphere-2024-960, 2024
Short summary
Leading the Lorenz-63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-4,https://doi.org/10.5194/npg-2024-4, 2024
Revised manuscript accepted for NPG
Short summary
Comparative study of strongly and weakly coupled data assimilation with a global land–atmosphere coupled model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
Nonlin. Processes Geophys., 30, 457–479, https://doi.org/10.5194/npg-30-457-2023,https://doi.org/10.5194/npg-30-457-2023, 2023
Short summary
Reducing manipulations in a control simulation experiment based on instability vectors with the Lorenz-63 model
Mao Ouyang, Keita Tokuda, and Shunji Kotsuki
Nonlin. Processes Geophys., 30, 183–193, https://doi.org/10.5194/npg-30-183-2023,https://doi.org/10.5194/npg-30-183-2023, 2023
Short summary
A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF
Shunji Kotsuki, Takemasa Miyoshi, Keiichi Kondo, and Roland Potthast
Geosci. Model Dev., 15, 8325–8348, https://doi.org/10.5194/gmd-15-8325-2022,https://doi.org/10.5194/gmd-15-8325-2022, 2022
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Leading the Lorenz-63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-4,https://doi.org/10.5194/npg-2024-4, 2024
Revised manuscript accepted for NPG
Short summary
Comparative study of strongly and weakly coupled data assimilation with a global land–atmosphere coupled model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
Nonlin. Processes Geophys., 30, 457–479, https://doi.org/10.5194/npg-30-457-2023,https://doi.org/10.5194/npg-30-457-2023, 2023
Short summary
Reducing manipulations in a control simulation experiment based on instability vectors with the Lorenz-63 model
Mao Ouyang, Keita Tokuda, and Shunji Kotsuki
Nonlin. Processes Geophys., 30, 183–193, https://doi.org/10.5194/npg-30-183-2023,https://doi.org/10.5194/npg-30-183-2023, 2023
Short summary
Control simulation experiments of extreme events with the Lorenz-96 model
Qiwen Sun, Takemasa Miyoshi, and Serge Richard
Nonlin. Processes Geophys., 30, 117–128, https://doi.org/10.5194/npg-30-117-2023,https://doi.org/10.5194/npg-30-117-2023, 2023
Short summary
A range of outcomes: the combined effects of internal variability and anthropogenic forcing on regional climate trends over Europe
Clara Deser and Adam S. Phillips
Nonlin. Processes Geophys., 30, 63–84, https://doi.org/10.5194/npg-30-63-2023,https://doi.org/10.5194/npg-30-63-2023, 2023
Short summary

Cited articles

Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2011. 
Bonavita, M., Hólm, E., Isaksen, L., and Fisher, M.: The evolution of the ECMWF hybrid data assimilation system, Q. J. Roy. Meteor. Soc., 142, 287–303, https://doi.org/10.1002/qj.2652, 2016. 
D-Wave: Advantage Processor Overview, https://www.dwavesys.com/media/3xvdipcn/14-1058a-a_advantage_processor_overview.pdf (last access: 10 June 2023), 2022. 
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, https://doi.org/10.1007/s10236-003-0036-9, 2003. 
Houtekamer, P. L. and Zhang, F.: Review of the ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 144, 4489–4532, https://doi.org/10.1175/MWR-D-15-0440.1, 2016. 
Download
Short summary
In Earth science, data assimilation plays an important role in integrating real-world observations with numerical simulations for improving subsequent predictions. To overcome the time-consuming computations of conventional data assimilation methods, this paper proposes using quantum annealing machines. Using the D-Wave quantum annealer, the proposed method found solutions with comparable accuracy to conventional approaches and significantly reduced computational time.