Articles | Volume 31, issue 2
https://doi.org/10.5194/npg-31-237-2024
https://doi.org/10.5194/npg-31-237-2024
NPG Letters
 | 
07 Jun 2024
NPG Letters |  | 07 Jun 2024

Quantum data assimilation: a new approach to solving data assimilation on quantum annealers

Shunji Kotsuki, Fumitoshi Kawasaki, and Masanao Ohashi

Related authors

Bottom–up approach for mitigating extreme events with limited intervention options: a case study with Lorenz 96 model
Takahito Mitsui, Shunji Kotsuki, Naoya Fujiwara, Atsushi Okazaki, and Keita Tokuda
Nonlin. Processes Geophys., 32, 457–469, https://doi.org/10.5194/npg-32-457-2025,https://doi.org/10.5194/npg-32-457-2025, 2025
Short summary
Observation error estimation in climate proxies with data assimilation and innovation statistics
Atsushi Okazaki, Diego S. Carrió, Quentin Dalaiden, Jarrah Harrison-Lofthouse, Shunji Kotsuki, and Kei Yoshimura
Clim. Past, 21, 1801–1819, https://doi.org/10.5194/cp-21-1801-2025,https://doi.org/10.5194/cp-21-1801-2025, 2025
Short summary
Ensemble data assimilation to diagnose AI-based weather prediction models: a case with ClimaX version 0.3.1
Shunji Kotsuki, Kenta Shiraishi, and Atsushi Okazaki
Geosci. Model Dev., 18, 7215–7225, https://doi.org/10.5194/gmd-18-7215-2025,https://doi.org/10.5194/gmd-18-7215-2025, 2025
Short summary
Numerical Experiments of Cloud Seeding for Mitigating Localization of Heavy Rainfall: A Case Study of Mesoscale Convective System in Japan
Yusuke Hiraga, Jacqueline Muthoni Mbugua, Shunji Kotsuki, Yoshiharu Suzuki, Shu-Hua Chen, Atsushi Hamada, Kazuaki Yasunaga, and Takuya Funatomi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3524,https://doi.org/10.5194/egusphere-2025-3524, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Ensemble-based model predictive control using data assimilation techniques
Kenta Kurosawa, Atsushi Okazaki, Fumitoshi Kawasaki, and Shunji Kotsuki
Nonlin. Processes Geophys., 32, 293–307, https://doi.org/10.5194/npg-32-293-2025,https://doi.org/10.5194/npg-32-293-2025, 2025
Short summary

Cited articles

Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2011. 
Bonavita, M., Hólm, E., Isaksen, L., and Fisher, M.: The evolution of the ECMWF hybrid data assimilation system, Q. J. Roy. Meteor. Soc., 142, 287–303, https://doi.org/10.1002/qj.2652, 2016. 
D-Wave: Advantage Processor Overview, https://www.dwavesys.com/media/3xvdipcn/14-1058a-a_advantage_processor_overview.pdf (last access: 10 June 2023), 2022. 
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, https://doi.org/10.1007/s10236-003-0036-9, 2003. 
Houtekamer, P. L. and Zhang, F.: Review of the ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 144, 4489–4532, https://doi.org/10.1175/MWR-D-15-0440.1, 2016. 
Download
Short summary
In Earth science, data assimilation plays an important role in integrating real-world observations with numerical simulations for improving subsequent predictions. To overcome the time-consuming computations of conventional data assimilation methods, this paper proposes using quantum annealing machines. Using the D-Wave quantum annealer, the proposed method found solutions with comparable accuracy to conventional approaches and significantly reduced computational time.
Share