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Abstract. Data assimilation is a crucial component in the Earth science field, enabling the integration of ob-
servation data with numerical models. In the context of numerical weather prediction (NWP), data assimilation
is particularly vital for improving initial conditions and subsequent predictions. However, the computational de-
mands imposed by conventional approaches, which employ iterative processes to minimize cost functions, pose
notable challenges in computational time. The emergence of quantum computing provides promising opportuni-
ties to address these computation challenges by harnessing the inherent parallelism and optimization capabilities
of quantum annealing machines.

In this investigation, we propose a novel approach termed quantum data assimilation, which solves the data
assimilation problem using quantum annealers. Our data assimilation experiments using the 40-variable Lorenz
model were highly promising, showing that the quantum annealers produced an analysis with comparable accu-
racy to conventional data assimilation approaches. In particular, the D-Wave Systems physical quantum anneal-
ing machine achieved a significant reduction in execution time.

1 Introduction

Data assimilation is a mathematical discipline that inte-
grates numerical models and observation data to improve
the interpretation and predictions of dynamical systems (Re-
ichle, 2008; Evensen, 2009). In particular, data assimilation
has been intensively investigated in numerical weather pre-
diction (NWP) during the past 2 decades to provide op-
timal initial conditions by combining model forecasts and
observation data (Kalnay, 2003; Houtekamer and Zhang,
2016). Among data assimilation methods, variational and
ensemble–variational data assimilation methods, which it-
eratively reduce cost functions via gradient-based optimiza-
tion, are widely used in most operational NWP centers such
as the European Centre for Medium-Range Weather Fore-
casts (ECMWF), the United Kingdom Met Office (Met Of-
fice), the National Oceanic, Atmospheric Administration of
the United States (NOAA) and the Japan Meteorological

Agency (JMA). However, data assimilation methods require
vast computational resources in NWP systems because of the
iterations needed for sufficient cost function reduction. For
example, in JMA’s global forecast system, data assimilation
requires about 25 times more computational resources than
forecast computations.

In recent years, quantum computing has attracted research
interest as a new paradigm of computational technologies
since it has a large potential to overcome computational chal-
lenges of conventional approaches through quantum effects
such as tunneling, superposition and entanglement. In par-
ticular, quantum annealing machines (Kadowaki and Nishi-
mori, 1998), such as D-Wave Systems quantum anneal-
ers (Johnson et al., 2011), are powerful and feasible tools
for solving optimization problems. Since the quantum an-
nealer 2000Q was released by D-Wave Systems in 2017,
quantum computing research has rapidly progressed in var-
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ious applications, such as for machine learning (Hu et al.,
2019; Willsch et al., 2020), graph partitioning (Ushijima-
Mwesigwa et al., 2017), clustering (O’Malley et al., 2018),
and model predictive control (Inoue et al., 2021).

In this study, we design a data assimilation method for the
quantum annealing machines. Although quantum machines
have been used in several engineering applications, to our
knowledge, this is the first study to apply quantum anneal-
ing to data assimilation problems. We focus on the four-
dimensional variational data assimilation (4DVAR) since it is
the most widely used data assimilation method in operational
NWP systems. We reformulate 4DVAR into a quadratic un-
constrained binary optimization (QUBO) problem, which
can be solved by quantum annealers. We subsequently ap-
ply the proposed method for a series of 4DVAR experiments
using a low-dimensional chaotic Lorenz 96 model (Lorenz,
1996; Lorenz and Emanuel, 1998), which has been widely
used in theoretical data assimilation studies (e.g., Anderson,
2011; Whitaker and Hamill, 2002; Miyoshi, 2011; Kotsuki et
al., 2017).

The original 4DVAR cost function is, as elaborated in
Sect. 2.1, a quadratic unconstrained optimization (QUO)
problem including a nonlinear operator with respect to the
analysis increment (NL-QUO). To solve 4DVAR using quan-
tum annealers, we first approximate the problem so as to
include only linear operations with respect to the analysis
(L-QUO), which is then reformulated to a be quadratic un-
constrained binary optimization (L-QUBO) problem. The
L-QUBO problem is solved using the D-Wave Advantage
physical quantum annealer (Phy-QA) and the Fixstars Am-
plify simulated quantum annealer (Sim-QA). We also em-
ploy the conventionally used quasi-Newton method with
the Broyden–Fletcher–Goldfarb–Shanno formula (BFGS) to
solve the NL-QUO and L-QUO, which are denoted as NL-
BFGS and L-BFGS hereafter. Numerical techniques and
practical implementations specifically tailored to quantum
data assimilation are also presented.

The rest of paper is organized as follows. Section 2 pro-
vides the method of quantum data assimilation, and Sect. 3
provides results and discussion. Finally, a summary is pre-
sented in Sect. 4.

2 Methodology and experiments

2.1 Conventional data assimilation

This study focuses on the four-dimensional variational data
assimilation (4DVAR), which is among the most widely used
data assimilation methods in operational NWP centers such
as ECMWF, Met Office, NOAA, and JMA. 4DVAR assimi-
lates observations over a time window to produce an analysis
trajectory that minimizes its cost function (Fig. 1). The cost
function of 4DVAR is derived from Bayes’ theorem and is

given by

J (δx0)= δxT0 Q−1
0 δx0+ dT1:LR−1

1:Ld1:L, (1)

where δx0 = x0− xf
0 (∈ RN ) is the analysis increment, Q

(∈ RN×N ) is the background error covariance, d1:L (∈ RPL)
is the observation departure, and R1:L (∈ RPL×PL) is the ob-
servation error covariance. The superscript f represents the
forecast, the subscript 0 denotes time t = 0 of the time win-
dow, and 1:L indicates observation time slots from t = 1 to
t = L. Here, N is the system size, L is the number of obser-
vation time slots, and P is the number of observations per
time slot. The observation departure is given by

dT1:L =
[
dT1 , . . .,d

T
k , . . .,d

T
L

]
, (2)

dk = yo
k −HMk|0

(
xf

0+ δx0

)
, (3)

where yo
k (∈ RP ) is the observation at time k, and Mk|0() is

the nonlinear model forecast from time t = 0 to k, and H
(∈ RP×N ) is the linear observation operator. The superscript
o denotes the observation. Conventional 4DVAR iteratively
updates the analysis increment, δx0, by reducing the cost
function using the quasi-Newton method based on the gra-
dient

∂J (δx0)/∂δx0 = 2Q−1
0 δx0− 2MT

1:LHT
1:LR−1

1:Ld1:L, (4)

where

HT
1:L =
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. . .
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and O is the zero matrix. The adjoint model MT
1:L (∈

RN×NL) is given by

MT
1:L|0 =
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T
k|0, . . .,M

T
L|0

]
, (6)

MT
k|0 =

∏k

l=1
MT
l|l−1, (7)

where Ml|l−1 (∈ RN×N ) is the tangent liner model that ap-
proximates

Ml|l−1

(
Ml−1|0

(
xf

0+ δx0

)
+ ε

)
'Ml|0

(
xf

0+ δx0

)
+Ml|l−1ε, (8)

where ε (∈ RN ) is the vector with very small real numbers
and ε = 10−5

× [1, · · ·,1]T is used in this study. This opti-
mization minimizes the quadratic cost function (Eq. 1), in-
cluding the nonlinear operator with respect to the analysis in-
crement (Eq. 3), and is referred to as NL-QUO in this study.
In NL-QUO, the tangent linear model, M, and its adjoint
model, MT , are updated at every iteration based on the latest
analysis; x0 = xf

0+ δx0.
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Figure 1. Conceptual image of 4DVAR data assimilation. Green and red lines indicate the trajectories of the first guess and updated analysis,
respectively. Blue circles with error bars represent observations.

As an intermediate step toward QUBO, the original cost
function is approximated as follows:

J (δx0)' J̃ (δx0)= δxT0 Q−1
0 δx0+ d̃T1:LR−1

1:Ld̃1:L, (9)

where

d̃T1:L =
[
d̃T1 , . . ., d̃

T
k , . . ., d̃

T
L

]
, (10)

dk ' d̃k = yo
k −Hxf

k −HM̃k|0δx0, (11)

M̃k|0 =
∏k−1

l=0
M̃l|l−1. (12)

Here, xf
k =Mk|0

(
xf

0
)
, and the tilde indicates linear approxi-

mations. Unlike NL-QUO, this optimization retains the same
tangent linear model and its adjoint model during the it-
eration. Namely, the tangent linear model is expanded not
around the trajectory from the latest analysis (xf

0+ δx0) but
around the trajectory from the first guess (xf

0) as follows:

Ml|l−1

(
Ml−1|0

(
xf

0

)
+ ε

)
'Ml|0

(
xf

0

)
+ M̃l|l−1ε. (13)

The substitution of Eqs. (10)–(12) into Eq. (9) gives the
following quadratic unconstraint optimization (L-QUO) that
has only linear operations with respect to the analysis incre-
ment as follows:

J̃ (δx0)= δxT0
(

Q−1
0 + M̃T

1:L|0HT
1:LR−1

1:LH1:LM̃1:L|0

)
· δx0− 2sT1:LR−1

1:LH1:LM̃1:L|0δx0+C, (14)

where the constant C is

C = sT1:LR−1
1:Ls1:L, (15)

sT1:L =
[
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T
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T
L

]
, (16)

sk = yo
k −Hxf

k. (17)

The gradient of J̃ is given by

∂J̃ (δx0)
∂δx0

= 2
(

Q−1
0 + M̃T

1:L|0HT
1:LR−1

1:LH1:LM̃1:L|0

)
· δx0− 2M̃T

1:L|0HT
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2.2 Quantum data assimilation

Quantum annealers require only the cost function in contrast
to conventional 4DVAR that requires the cost function and its
gradient. However, the cost function should be represented
by binary variables (i.e., 0 or 1) for quantum annealers. In
this study, we represent a real number withZ qubits, whereZ
is a natural number. In accordance with the method of Inoue
et al. (2021), a mapping matrix, G (∈ RN×NZ), is used in this
study.

δx0 '
1
α

Gb =
1
α

 gT 0
. . .

0 gT

b, (19)

gT =
[
−2Z−1,2Z−2,2Z−3, . . .,21,20

]
, (20)

where α is the tunable scaling parameter, b (∈ RNZ) is the
binary vector whose elements are all either 0 or 1, and 0 is
the vector whose elements are all 0. Thus, Eq. (14) is refor-
mulated into QUBO as follows:

J̃ (δx0)'H (b)= bTAb+uT b+C, (21)

where H is the Hamiltonian. A (∈ RNZ×NZ) and u (∈ RNZ)
are given as follows:

A=
1
α2 GT

(
Q−1

0 + M̃T
1:L|0HT

1:LR−1
1:LH1:LM̃1:L|0

)
G, (22)

uT =−
2
α

sT1:LR−1
1:LH1:LM̃1:L|0G. (23)

Note that the constant C is irrelevant to the minimiza-
tion problem. Quantum annealers solve the QUBO problem
(Eq. 21) by inputting A and u into the solvers.

2.3 Experiments with the Lorenz 96 model

This study performs twin idealized experiments using the 40-
variable Lorenz 96 model, which has been used widely in
theoretical data assimilation studies (e.g., Anderson, 2011;
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Table 1. Experiments conducted in this study. Outer loop indicates that the trajectory is updated during 4DVAR. Inner loop indicates that the
analysis increments are computed iteratively by the quasi-Newton method with the BFGS formula.

Experiments Cost function Solver Outer loop Inner loop

NL-BFGS NL-QUO Quasi-Newton with BFGS × ×

L-BFGS L-QUO Quasi-Newton with BFGS ×

Sim-QA L-QUBO Simulated QA
Phy-QA L-QUBO Physical QA

Whitaker and Hamill, 2002; Miyoshi, 2011; Kotsuki et al.,
2017). The Lorenz 96 model is defined as follows:

dxi
dt
= (xi+1− xi−2)xi−1− xi +F, i = 1,2, . . .,N, (24)

where the boundary is cyclic (i.e., xi = xi+N = xi−N ) and
the model dimension, N , is 40. The forcing is fixed at F =
8.0, which makes the model behave chaotically. The model
is integrated using a fourth-order Runge–Kutta scheme with
a non-dimensional time step of 0.05. A time step of 0.05 is
considered to be 6 h, following Lorenz and Emanuel (1998).
This study uses the identity matrix for the observation error
covariance such that variance of the uncorrelated observa-
tion error is 1.0. We first employed the nature run by run-
ning the Lorenz 96 model, and observation data were gener-
ated based on the nature run every 6 h (0.05 time units). All
grid points are observed. The background error covariance
is tuned to be Q= 0.15I. As in conventional 4DVAR, NL-
QUO and L-QUO are solved using the quasi-Newton method
with Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula
(Table 1). In our BFGS-based 4DVAR experiments, we use
the AMD Ryzen 7 5800U with a Radeon graphics card as
the CPU. All source codes are written in the Python v3.8.10.
The NumPy and SciPy libraries are used for numerical com-
putations. We first conducted NL-QUO 4DVAR data assimi-
lation cycles 50 times over a period of 100 d, with a 2 d time
window. Then, we preserved the 50 pieces of first-guess data,
which were subsequently used for the other three approaches:
L-QUO by BFGS and L-QUBO by simulated and physical
quantum annealers. Namely, our experiments purely com-
pare the optimization processes of data assimilation among
the four approaches.

2.4 Quantum annealers

As the experimental environment of the Phy-QA, we use D-
Wave Advantage System 4.1 which consists of 5627 physical
qubits and 177 logical qubits, respectively (D-Wave, 2022).
Because the D-Wave Advantage performs computations us-
ing the logical qubits, the 177 logical qubits are available
for computations. Because of this limitation, we represent
a real number (an analysis increment for one variable of
the Lorenz 96 model) with four logical qubits (Z = 4) to
limit the size of binary vector b less than 177 logical qubits
(i.e., N×Z = 40×4= 160≤ 177). The computational time

of the D-Wave optimizations are measured using the execu-
tion_time function. Quantum annealers give b as a solution
of the QUBO problem by submitting input parameters A and
u to the solvers (Eq. 21). Here, it is essential to emphasize
that physical quantum annealers do not employ traditional
algorithms to solve QUBO problems; instead, they obtain so-
lution b as a result of quantum effects. Additional details on
quantum annealers can be found in Appendix A.

For the simulated quantum annealer, we use the Fixstars
Amplify simulated quantum annealer (Fixstars Amplify An-
nealing Engine), which incorporates ≥ 65536 physical and
logical qubits (Matsuda, 2020). The simulated quantum an-
nealer emulates quantum effects via digital computations us-
ing the graphics processing unit (GPU). Although the simu-
lated quantum annealers cannot cause real quantum effects,
they are applicable to large-scale calculations due to their
logical qubits being larger than those of Phy-QA. The com-
putational time is also measured by the execution_time func-
tion for Sim-QA. Despite the larger number of logical qubits
available in the Fixstars Amplify Sim-QA, we use four log-
ical qubits for a real number (Z = 4) in numerical experi-
ments to compare with the D-Wave Phy-QA. Consequently,
we use 160 logical qubits for both of Sim-QA and Phy-QA
experiments.

3 Results and discussion

3.1 Performance of quantum data assimilation

Figure 2a and b show a comparison of the mean analysis and
2 d forecast root mean square errors (RMSEs) with respect
to the nature run for the four different approaches. As antic-
ipated, the NL-BFGS achieved the lower RMSEs as it did
not approximate the original cost function. Approximating
the nonlinear operations of the original cost function led to
a slight increase in the analysis and forecast RMSEs, as ob-
served in L-BFGS. Solving QUBO using the quantum an-
nealers resulted in reduced analysis errors compared to the
first guess, as demonstrated by the Sim-QA and Phy-QA.
Here, tunable parameters for quantum annealers, namely the
scaling factor, α, and num_reads, were calibrated prior to
experiments and are discussed in the following subsection
(Sect. 3.2). Although Phy-QA successfully reduced analysis
errors when compared to the first guess, it exhibited a slightly
larger analysis RMSE than the other three approaches. The

Nonlin. Processes Geophys., 31, 237–245, 2024 https://doi.org/10.5194/npg-31-237-2024



S. Kotsuki et al.: Quantum data assimilation 241

Figure 2. (a) Mean analysis root mean square errors (RMSEs) at the initial time of the 4DVAR data assimilation window (a-
RMSE), (b) mean 2 d forecast RMSEs (f-RMSE), and (c) mean execution time (s) over 50 data assimilations for NL-BFGS (a-
RMSE= 0.2109; f-RMSE= 0.2520; 13.18 s; blue), L-BFGS (a-RMSE= 0.2120; f-RMSE= 0.2554; 0.129 s; red), Fixstars Amplify Sim-QA
(a-RMSE= 0.2105; f-RMSE= 0.2531; 0.057 s; orange), and D-Wave Phy-QA (a-RMSE= 0.2209; f-RMSE= 0.3101; 0.028 s; magenta).
The dashed green lines in (a) and (b) indicate the first guess prior to data assimilation (a-RMSE= 0.2530; f-RMSE= 0.5267). The num_reads
of Phy-QA was set to 50. The scaling factor, α, was set to 20 and 50 for Sim-QA and Phy-QA, respectively.

larger RMSE of Phy-QA is intensified when we see the 2 d
forecast RMSE. This discrepancy could be attributed to the
stochastic quantum effects inherent in D-Wave’s quantum an-
nealer, as discussed in detail in the next subsection.

On the other hand, Phy-QA demonstrated the fastest ex-
ecution time among the four approaches (Fig. 2c). Here,
NL-BFGS exhibited the longest computation time due to
the iterative updates of the trajectory and its tangent linear
and adjoint models. In contrast, L-BFGS, which retains the
first-guess-based trajectory, was significantly faster than NL-
BFGS. Sim-QA required a longer execution time than Phy-
QA, presumably because GPU-based simulated quantum an-
nealers involve computations for the artificial emulation of
quantum effects. The D-Wave Phy-QA obtained a significant
reduction in computation time compared to the other three
approaches (NL-BFGS, L-BFGS, and Sim-QA), taking less
than 0.05 s to find a solution.

It should be noted that there are slight differences in anal-
ysis and forecast RMSEs between NL-BFGS and L-BFGS
in Fig. 2a and b. The degradations of L-BFGS with respect
to NL-BFGS would be more pronounced for stronger non-
linear cases, such as those with longer time windows of
4DVAR, since Eqs. (9)–(13) directly simplify the nonlinear
operator in 4DVAR to a linear operator. Here, our quantum
data assimilation solves the QUBO problem (Eq. 21), which
is an approximation of the cost function solved in L-BFGS
(Eq. 14). Therefore, Sim-QA and Phy-QA would worsen too
for stronger nonlinear cases.

Figure 3 provides an arbitrarily selected data assimilation
example, where the cost functions of NL-QUO and L-QUO
are depicted by blue and red contour lines, respectively. Note
that Fig. 3 shows an example of analysis while Fig. 2a pro-
vides the mean RMSEs averaged over 50 data assimilations.
The BFGS-based 4DVAR (NL-BFGS and L-BFGS) gradu-
ally converged towards their respective analyses through it-

erative updates. Consequently, both NL-BFGS and L-BFGS
yielded analyses that are closer to the minima of their re-
spective cost functions compared to the first guess (blue and
red triangles in Fig. 3). In contrast, Sim-QA and Phy-QA
produced a single analysis each as they do not involve it-
erations. In this specific example, Sim-QA, aiming to mini-
mize L-QUBO, generated an analysis (as a yellow triangle)
that was distant from the bottom of L-QUO. Conversely, the
analysis produced by Phy-QA (a magenta triangle) is closer
to the minima of NL-QUO. Notably, despite solving the same
L-QUBO problem, Sim-QA and Phy-QA yielded greatly dif-
ferent analyses in this example. This discrepancy is presumed
to be a result of stochastic quantum effects, which will be fur-
ther investigated in the next subsection.

3.2 Sensitivity to tunable parameters

It is important to mention that the D-Wave physical quantum
annealer produces non-deterministic outputs due to stochas-
tic quantum effects. Therefore, the quantum annealer in-
cludes a tunable parameter called num_reads, which defines
the number of states (output solutions) to be read from the
solver. Generally, a larger value of num_reads increases the
probability of obtaining a better solution. Here, the better
solution, which results in smaller Hamiltonian H (Eq. 21),
is expected to yield smaller analysis RMSEs. In this study,
we investigated the sensitivity of Phy-QA to the num_reads
parameter. Figure 4 illustrates the sensitivity of the analy-
sis RMSE and the mean computational time with respect
to the num_reads parameter. For each num_reads value, we
repeated 50 data assimilations 10 times. The mean RMSE
and standard deviation over the 10 samples are presented in
Fig. 4a. Increasing the value of num_reads generally resulted
in a reduction in the analysis RMSE. While the execution
time exhibited a linear increase with respect to num_reads
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Figure 3. An illustration of data assimilations from an arbitrarily selected first guess. The black star and the green circle indicate the
truth and the first guess, respectively. Blue, red, orange, and magenta triangles are the analyses of NL-BFGS, L-BFGS, Sim-QA, and Phy-
QA, respectively. Blue and red lines represent the analysis updates over iterations for NL-BFGS and L-BFGS, whose internal analyses are
indicated by the cross marks. Red and blue contours show the cost functions with and without the linearization (L-QUO and NL-QUO),
respectively. These cost functions were computed in a grid search for 2 variables (x2 and x3) of the Lorenz 96 model, with true data used
for the other 38 variables. Since the BFGS-based 4DVAR algorithm updates 40 variables, analyses of NL-QUO and L-QUO (blue and red
circles) are not exactly placed at the minima of their cost functions. The num_reads of Phy-QA was set to 50. The scaling factor α was set to
20 and 50 for Sim-QA and Phy-QA, respectively.

Figure 4. Sensitivity of (a) analysis RMSE and (b) mean execution time to the tunable parameter num_reads in D-Wave Phy-QA. We
conducted 50 data assimilations 10 times, and their means and standard deviations over 10 samples are represented by bars and error bars.
The scaling factor α is set to 50.

(Fig. 4b), reading out solutions from the solver multiple
times proved beneficial in achieving stable and improved
analyses. Importantly, the standard deviation of the mean
RMSE was found to be insensitive to the num_reads param-
eter. This observation indicates that even if we read out the
output from the solver over 100 times, the stochastic effects
persist and cannot be eliminated for Phy-QA.

The scaling factor α is an important parameter for regulat-
ing analysis accuracy in quantum annealers (see Eq. 19). Due

to the limited number of available logical qubits for Phy-QA,
this study represented real numbers using only four logical
qubits. In other words, both our Phy-QA and Sim-QA could
only represent 24

= 16 distinct real numbers. For instance,
a scaling factor of α = 20 indicates that numerical experi-
ments can handle real numbers ranging from −0.40 to 0.35
in increments of 0.05. Our sensitivity experiments to the scal-
ing factor, α, revealed similar increasing trends for Phy-QA
and Sim-QA when α ≥ 50 (Fig. 5). Increasing the scaling

Nonlin. Processes Geophys., 31, 237–245, 2024 https://doi.org/10.5194/npg-31-237-2024



S. Kotsuki et al.: Quantum data assimilation 243

Figure 5. Sensitivity of analysis RMSEs to the scaling factor α for
Sim-QA (orange) and Phy-QA (magenta). The dashed green line in
(a) represents the first-guess RMSE prior to data assimilation. The
parameter num_reads of Phy-QA is set to 50.

factor, α, resulted in degraded analysis accuracy, approach-
ing the RMSE of the first guess. This is because excessively
large scaling factors can lead to slight changes in the anal-
ysis increment. For instance, when α = 500, the minimum
and maximum analysis increments are−0.016 and 0.014, re-
spectively. It indicates that when α = 500, Phy-QA and Sim-
QA can manage a limited increment (from−0.016 to 0.014);
as a result, their RMSEs approach the RMSE of the first
guess. Interestingly, noticeable discrepancies were observed
between Phy-QA and Sim-QA for α ≤ 20, presumably due
to the stochastic quantum effects specific to Phy-QA. As ob-
served in Fig. 4, we cannot eliminate stochastic effects for
Phy-QA even if we read out output from the solver over 100
times. For smaller scaling factors, a stochastic change in a
single qubit can induce larger changes in the analysis incre-
ment. Consequently, the optimal scaling factor for Phy-QA
was found to be larger than that for Sim-QA. Based on the re-
sults of the sensitivity experiments, scaling factors of α = 20
and α = 50 were used for Sim-QA and Phy-QA in Sect. 3.1.
These sensitivity experiments also indicate that the optimal
scaling factor may differ between Sim-QA and Phy-QA.

4 Summary

This study proposed the quantum data assimilation which
solves data assimilation problems on quantum annealing ma-
chines. The main results of this investigation are as follows:

1. We reformulated the data assimilation problem into the
quadratic unconstrained binary optimization (QUBO)
problem so that quantum annealing machines can solve
data assimilation.

2. Using the 40-variable Lorenz model, we succeeded in
solving data assimilation on quantum annealers for the
first time. The results of our experiments were highly
promising, demonstrating that the quantum annealers
can yield an analysis whose accuracy is comparable
to the conventional quasi-Newton-based iterative ap-
proach.

3. The D-Wave physical quantum annealing machine
needed an execution time of less than 0.05 s, which is
significantly smaller than conventional approaches.

4. Since the D-Wave physical quantum annealer produces
non-deterministic outputs due to stochastic quantum ef-
fects, reading out solutions multiple times was benefi-
cial in achieving stable and improved analyses.

5. The scaling factor for quantum data assimilation is an
important parameter for regulating analysis accuracy in
our configuration. Due to the stochastic quantum ef-
fects, the optimal scaling factor for D-Wave’s physical
quantum annealing machine was different from the sim-
ulated quantum annealer.

At the time of writing this paper, the number of logical qubits
in the physical quantum annealer (O

(
102)) is far from meet-

ing the large-scale computation requirements of practical
NWP models (>O

(
108)). To extend our approach to high-

dimensional models such as NWP models, employing di-
mensional reduction would be necessary and helpful. Dimen-
sional reduction techniques have been used in data assim-
ilations such as operational 4DVARs that solve the inverse
problem in spectral space (e.g., Bonavita et al., 2016). Fur-
thermore, recent studies proposed solving data assimilation
in low-dimensional latent space spanned by deep-learning-
based nonlinear functions (e.g., Peyron et al., 2021). A multi-
dimensional inverse problem can be converted into a unitless
and normalized inverse problem using these dimensional re-
duction techniques. Therefore, these dimensional techniques
are also beneficial for avoiding tuning the scaling parameter,
α, for each variable. Future research is necessary to explore
how to integrate these dimensional reduction methods with
quantum data assimilation.

We anticipate that our findings will inspire future develop-
ments in the application of quantum technologies to advance
data assimilation to reach a deeper understanding and im-
proved predictions of real-world complex systems in NWP
and beyond. In addition, our work would advance the prac-
tical applications of quantum annealing machines in solving
complex optimization problems in Earth science.

Appendix A: Quantum annealer

This Appendix describes how quantum annealers reach the
solutions of the QUBO problems. First of all, it should
be noted that there are two kinds of quantum computers
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Figure A1. A conceptual image of the quantum annealing, showing (a) how users submit jobs to quantum annealers through an application
programming interface (API), (b) a schematic image of the control device, quantum processing unit (QPU), and measuring device in the
D-Wave quantum annealers, and (c) a schematic image of quantum annealing from an initial state with quantum superposition to a final state
to be read out. Blue and red arrows in (c) represent the upward and downward spins of qubits, respectively. (d) A schematic image of states
that are read out by the measuring device. Here, num_read indicates the number of times the quantum annealing process is executed and
the resulting states are read out. Finally, the best result, which yielded the smallest Hamiltonian among the num_reads results, is returned to
users.

at this moment: quantum annealing machines and quantum
gate machines. Quantum gate machines are general-purpose
quantum devices capable of performing a wide range of
quantum computations. The quantum gate machines enable
users to design quantum circuits which manipulate qubits
through gate operations to solve complex problems effi-
ciently.

Quantum annealers are devices specialized for solving op-
timization problems written by the QUBO problem or Ising
model. Here, a problem written by the Ising model can be
reformulated to a mathematically equivalent QUBO prob-
lem and vice versa. Figure A1 provides a conceptual im-
age of quantum annealing. Users can submit jobs (i.e., prob-
lems written by the QUBO or Ising model) to quantum an-
nealers through an application programming interface (API)
(Fig. A1a). This study used the Fixstars Amplify software de-
velopment kit (known as Amplify SDK) as an API to submit
jobs to D-Wave’s physical quantum annealer and the Fixs-
tars Amplify simulated quantum annealer. Figure A1b shows
the functions of the control device, quantum processing unit
(QPU), and measuring device, respectively. The control de-
vice regulates magnetic fields to tune the Hamiltonian of the
quantum system, guiding to a low-energy state which cor-
responds to an optimal solution of QUBO. In QPU, quan-
tum effects (superposition and entanglement) are leveraged
to explore potential solutions of the QUBO problem through
quantum annealing (Fig. A1c). The measuring device reads
the final state of the QPU. Here, num_reads defines the num-
ber of states to be read from the QPU by the measuring de-
vice. Finally, a user can obtain a solution (binary vector b in

this study) that yielded the smallest Hamiltonian among the
num_reads states read by the measuring device.
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