Articles | Volume 30, issue 3
https://doi.org/10.5194/npg-30-299-2023
https://doi.org/10.5194/npg-30-299-2023
Research article
 | 
21 Jul 2023
Research article |  | 21 Jul 2023

An approach for projecting the timing of abrupt winter Arctic sea ice loss

Camille Hankel and Eli Tziperman

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
On the interaction of stochastic forcing and regime dynamics
Joshua Dorrington and Tim Palmer
Nonlin. Processes Geophys., 30, 49–62, https://doi.org/10.5194/npg-30-49-2023,https://doi.org/10.5194/npg-30-49-2023, 2023
Short summary
Estimate of energy loss from internal solitary waves breaking on slopes
Kateryna Terletska and Vladimir Maderich
Nonlin. Processes Geophys., 29, 161–170, https://doi.org/10.5194/npg-29-161-2022,https://doi.org/10.5194/npg-29-161-2022, 2022
Short summary
The effect of strong shear on internal solitary-like waves
Marek Stastna, Aaron Coutino, and Ryan K. Walter
Nonlin. Processes Geophys., 28, 585–598, https://doi.org/10.5194/npg-28-585-2021,https://doi.org/10.5194/npg-28-585-2021, 2021
Short summary
Enhanced diapycnal mixing with polarity-reversing internal solitary waves revealed by seismic reflection data
Yi Gong, Haibin Song, Zhongxiang Zhao, Yongxian Guan, Kun Zhang, Yunyan Kuang, and Wenhao Fan
Nonlin. Processes Geophys., 28, 445–465, https://doi.org/10.5194/npg-28-445-2021,https://doi.org/10.5194/npg-28-445-2021, 2021
Short summary
Effects of upwelling duration and phytoplankton growth regime on dissolved-oxygen levels in an idealized Iberian Peninsula upwelling system
João H. Bettencourt, Vincent Rossi, Lionel Renault, Peter Haynes, Yves Morel, and Véronique Garçon
Nonlin. Processes Geophys., 27, 277–294, https://doi.org/10.5194/npg-27-277-2020,https://doi.org/10.5194/npg-27-277-2020, 2020
Short summary

Cited articles

Abbot, D. S. and Tziperman, E.: Sea ice, high-latitude convection, and equable climates, Geophys. Res. Lett., 35, L03702, https://doi.org/10.1029/2007GL032286, 2008. a, b
Abbot, D. S., Walker, C., and Tziperman, E.: Can a convective cloud feedback help to eliminate winter sea ice at high CO2 concentrations?, J. Climate, 22, 5719–5731, https://doi.org/10.1175/2009JCLI2854.1, 2009. a
An, S.-I., Kim, H.-J., and Kim, S.-K.: Rate-Dependent Hysteresis of the Atlantic Meridional Overturning Circulation System and Its Asymmetric Loop, Geophys. Res. Lett., 48, e2020GL090132, https://doi.org/10.1029/2020GL090132, 2021. a, b, c, d, e
Armour, K., Eisenman, I., Blanchard-Wrigglesworth, E., McCusker, K., and Bitz, C.: The reversibility of sea ice loss in a state-of-the-art climate model, Geophys. Res. Lett., 38, L16705, https://doi.org/10.1029/2011GL048739, 2011. a
Baer, S. M., Erneux, T., and Rinzel, J.: The slow passage through a Hopf bifurcation: delay, memory effects, and resonance, SIAM J. Appl. Math., 49, 55–71, 1989. a, b
Download
Short summary
We present a novel, efficient method for identifying climate tipping point threshold values of CO2 beyond which rapid and irreversible changes occur. We use a simple model of Arctic sea ice to demonstrate the method’s efficacy and its potential for use in state-of-the-art global climate models that are too expensive to run for this purpose using current methods. The ability to detect tipping points will improve our preparedness for rapid changes that may occur under future climate change.