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Introduction

This document contains the equations of the sea ice model used (Text S1), results from a

modified version of the cubic ODE that has a periodic forcing term (Text S2), specific de-

tails of the calculations of the diagnostics on the time-changing forcing trajectories (Text

S3), a heuristic derivation that explains the result that max(dx/dβ) ≈ 1/µ (Text S4), and

the calculations of the uncertainties on the predictions of bi-stability width (Text S5).

Text S6 provides a method for estimating the likelihood of the existence of bi-stability

using results from the main text. Text S7 provides a similar, but alternate approach for

estimating the equilibrium hysteresis width from transient simulations alone. In Table S1

we provide the exact parameter values used to configure the sea ice model in the three

scenarios described in the main text. Figures S1–S2, we provide extra information on

model setup and experimental design, and Figures S3–S5 show March average quantities

for all four state variables in the sea ice model from the experiments performed in the

main text. Figure S6 shows results from the periodically-forced ODE described in Text

S2, and Figures S7–S8 relate to understanding the convergence behavior of max(dx/dβ)

as a function of ramping rate. Figure S9 helps visualize our method for calculating COi
2

and COd
2, the two edges of rate-dependent hysteresis described in the main text. Fig-

ure S10 demonstrates the skill of the alternative method for predicting the equilibrium

hysteresis described in Text S7, and finally, Figure S11 demonstrates that the method

proposed in the main text also works for predicting the equilibrium structure of a generic

ODE (Eqn. 1).

Text S1: Sea ice model equations

The Eisenman model contains four state variables: sea ice volume (V ), sea ice area (A),

sea ice surface temperature (Ti), and mixed layer temperature (Tml) for a single box repre-

senting the entire Arctic. The atmosphere is assumed to be in radiative equilibrium with

the surface, and the model is forced by a seasonal cycle of insolation, of poleward heat

transport, and of local optical thickness of the atmosphere, which represents cloudiness.

The addition of CO2 is represented by increasing the optical thickness and the midlati-

tude temperature, which increases poleward heat flux. Melt ponds are parameterized by

allowing the ice to melt when the surface temperature reaches 0 ◦C and by modifying the

ice albedo when this condition is met. The equations for the model are written below, and
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can also be found in the original paper (Eisenman, 2007) that used them. The surface

longwave radiation imbalance at the surface is

ϵ(T, Ts) =
2a

2 +N
− D(Ts)

2
+ b

(
T − Ts +

2Ts

2 +N

)
, (1)

where N is the optical depth of the atmosphere and Ts = ATi + (1−A)Tml is the surface

temperature of the box. D(Ts) is the atmospheric poleward heat transport given by

D(Ts) = kD(Tmidlat − Ts), (2)

where Tmidlat is a prescribed near-surface atmospheric temperature of the midlatitudes.

The net heat flux into the mixed layer is given by

Fml = (1− A)(−ϵ(Tml, Ts) + (1− αo)Fsw)− AγTml + Fentr, (3)

where Fsw is the shortwave radiation reaching the surface. The mixed layer temperature

normally evolves according to this net heat flux, except for when it is at 0◦ C and cooling,

at which point the negative heat flux goes entirely into new ice production and Tml stays

at 0◦ C. This is expressed as:

cmlHml
dTml

dt
=

{
0 if Tml = 0 and Fml < 0,

Fml otherwise,
(4)

Fni =

{
−Fml if Tml = 0 and Fml < 0,

0 otherwise,
(5)

where Fni is the new ice production. The ice volume and surface temperature evolution

are conditioned on whether or not the surface is melting. With the net ice surface heat

flux when Ti = 0 written as Fnet = −ϵ(0, Ts) + (1− αi)Fsw, the equations for ice volume

and surface temperature are:

L
dV

dt
=

{
A(ϵ(Ti, Ts)− (1− αmp)Fsw − γTml)− v0A Ti = 0 and Fnet > 0,

A(−kTi

h
− γTml) + Fni − v0LV otherwise,

(6)

ch

2

dTi

dt
=

{
0 if Ti = 0 and Fnet > 0,

−ϵ(Ti, Ts) + (1− αi)Fsw − kTi

h
otherwise.

(7)

Finally, ice area evolution occurs according to:

dA

dt
=

Fni

Lh0

− A

2V
R

(
−dV

dt

)
− v0A. (8)

As mentioned in the main text, in our implementation of the model we also allow the

CO2 concentration to vary inter-annually, by allowing the optical depth (N) and the
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midlatitude temperature to be functions of time. They can be written as:

N(t) = N0 + A sin

(
2π

1 yr
t

)
+∆N × log2(CO2(t)/280 ppm), (9)

Tmidlat(t) = T0 +B sin

(
2π

1 yr
t

)
+ 3◦C× log2(CO2(t)/280 ppm), (10)

where the time dependence of the final term in each equation is a modification from

(Eisenman, 2007). The sin terms in each equation represent the seasonal cycles of the

atmospheric optical depth and the midlatitude temperature, respectively, at 280 ppm of

CO2. In our hysteresis experiments, CO2(t) is an exponentially increasing and then ex-

ponentially decreasing function of time (see Fig. S2), leading to CO2 forcings that change

linearly in time.

Test S2: Cubic ODE with periodic forcing

In this section, we analyze an ODE that is similar to the one presented in the main text

but includes a periodic forcing term, which makes it more analogous to the seasonally

forced model of sea ice. The equations for this system are:

dx

dt
= −x3 + δx+ 50 sin(2πt) + β(t), β(t) = β0 + µt, (11)

The magnitude of 50 on the sin term is chosen such that the magnitude of the changes

in β compared to the amplitude of the periodic forcing is roughly similar to the mag-

nitude of CO2 changes compared to the amplitude of the seasonal cycle of insolation in

the sea ice model. The values of δ needed to configure the three scenarios are slightly

different than those for the non-periodic ODE and are as follows: δ = 6 for Scenario 1

(wide bi-stability), δ = 4 for Scenario 2 (narrow bi-stability) and δ = 3.4 for Scenario 3

(no bi-stability). Since the solution x is now oscillatory during time-changing and fixed

forcing scenarios, we plot the maximum values of x during each oscillation; this is meant

to parallel the plotting of March sea ice (which is approximately the maximum amount

of ice during the annual cycle). We only range β from -5 to 5 as this is the range that is

needed to sweep across the bifurcations. We see in Figure S6 that the qualitative charac-

teristics of the rate-dependent hysteresis found in an ODE without periodic forcing (main

text) also are found in this ODE. There is rate-dependent hysteresis for all three scenarios

(panels a-c) and the width of this hysteresis gets wider as we move to faster ramping rates.

The addition of the periodic forcing combined with the choice to plot the maximum value

of x during each oscillation also generates asymmetry in the increasing and decreasing

forcing trajectories (blue vs. red lines). In panel d we plot the maximum gradient of x

with respect to β during transient forcing simulations versus the ramping rate, µ. We

see that, similar to the result in the main text, the maximum gradient follows a negative

power law as a function of µ, with the slope of the power law becoming steeper and ap-

proaching a value of -1 as we move from Scenario 3 to Scenario 1. Thus we conclude that
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the comparisons we made in the main text between the sea ice model and the simple cu-

bic ODE would also apply if we had chosen to include a periodic forcing in the cubic ODE.

Text S3: Calculating diagnostics on time-changing forcing trajectories

We calculate the maximum rate of change of sea ice volume with respect to CO2 con-

centration by taking the maximum change in monthly-averaged March sea ice volume

between any two consecutive years during the rate-dependent hysteresis period of the

simulations (i.e., ignoring the initial fast decline of sea ice at low CO2) divided by the

change in yearly average CO2 concentration between those two years. The maximum rate

of change of sea ice in time is calculated analogously but divided by the time interval

rather than the change in yearly mean CO2.

To calculate the maximum rate of change of the solution to the cubic ODE with re-

spect to the forcing parameter (β(t)) or time, we calculate the smoothed absolute change

around the two time steps that show the greatest absolute change in x, divided by the

change in β or by time. The “smoothed” absolute change is simply the difference between

the mean value of x over the five time steps before the largest jump in x and the mean

during the five time steps after the jump.

Text S4: Deriving max(dx/dβ) ∝ µ−1

To understand why max(dx/dβ) ∝ µ−1 and thus why the maximum rate of change of

sea ice also follows a similar negative power law as a function of ramping rate, we first

note that,

max

(
dx

dβ

)
= max

(
dx

dt

dt

dβ

)
=

1

µ
max

(
dx

dt

)
. (12)

Thus in Fig. S7 we plot the maximum March dV/dt and the maximum dx/dt respectively

as a function of the ramping rate. We can see that as predicted by eqn. 12, the slopes

of the power laws in main text Figs. 2a and 2b are those found in Figs. S7 minus 1.

In particular, the µ−1 rate of convergence in Scenario 1 is recovered when noting that

max(dx/dt) appears to be a constant value as a function of the ramping rate for small

enough rates; an unintuitive result that is explained further below. The slopes of the power

laws that characterize the convergence of the transient simulations to their equilibrium

behavior may also prove a useful tool for inferring the equilibrium, in addition to the

method we proposed in the main text.

Next, we provide a heuristic derivation for why max(dx/dt) approaches a constant in

Scenarios 1 and 2 when µ is small. Using Figure S8 for reference, we can see that as

x moves from one equilibrium, x∗
a, to the next, x∗

b , during the bifurcation, its maximum

rate of change is given by the local minimum of the dx/dt curve, given by c. However,

because we are considering a non-autonomous equation with the time-changing forcing

β(t) that shifts the dx/dt curve down in time, the local minimum c is a function of time,
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according to the ramp rate, µ. In other words, the maximum rate of change (dx/dt)

during the transition from x∗
a to x∗

b (the value of which is also changing in time) under

a given forcing β(t) = β0 + µt is greater than or equal to c0 and less than or equal to

c = c0 + µt, where c0 is the local minimum of dx/dt exactly at the point of bifurcation

and t is the time it takes to complete the transition from one steady-state to the other. In

the case where c0 is large compared to µt, we can make the approximation that c ≈ c0 as

µ −→ 0. Thus, the max(dx/dt) −→ c0 as µ −→ 0. Finally, returning to equation 11, we get

that max(dx/dβ) = c0/µ for small µ, recovering the µ−1 rate of convergence we estimated

empirically.

We do not expect this derivation to hold in cases where c0 is not large compared to µ.

Indeed, in the ODE without a bifurcation where c0 = 0, we see that max(dx
dt
) is a positive

power of µ, which, when divided by µ according to equation 11, causes max( dx
dβ
) to be a

negative power of µ with a magnitude less than 1. We argue that this derivation from a

simple ODE provides intuition for the more gradual slopes for the physics-based sea ice

model seen in Fig. 2a as we move from a scenario (1) with a wide region of bi-stability to

a scenario (3) with no bi-stability or bifurcation. Specifically, in a cubic ODE, the value

c0 exactly corresponds to the width of parameter forcing for which there is bi-stability;

while this may not hold exactly for the physical sea ice model, we expect Scenario 1 in

the sea ice model to be associated with a large c0 (a fast maximum rate of change of sea

ice in time), Scenario 2 to be associated with a smaller c0, and Scenario 3 to be associated

with small or zero c0. As discussed previously, the larger the magnitude of c0 the closer

the slope of the maximum rate of change in time versus the ramp rate is to zero, which

in turn sets the slope of the maximum rate of change in CO2 versus the ramp rate. Thus,

the derivation that max(dx/dβ) ≈ c0µ
−1 for the cubic ODE with a bifurcation provides

insight into the convergence behavior of the transient sea ice simulations for all three

scenarios.

Text S5: Calculating uncertainty on predictions of the CO2 value of tipping

points

When fitting curves to COi
2 and COd

2 in order to predict COi
2 and COd

2 at infinitely slow

ramping rates, we noticed that there was some auto-correlation in the residuals (which

are the difference between the fitted curves and the actual values of COi
2 and COd

2 at all

18 ramping rates). This means that using the covariance matrix of the fitted parame-

ters underestimates the uncertainty on the prediction of COi
2 and COd

2 at infinitely slow

ramping rates (especially in the case of Scenario 3). To address this issue, we instead

use a block-bootstrapping method to calculate the uncertainty on our predictions. We

sample with a block size of three, and bootstrap 1000 times, giving us a distribution of

estimates of the equilibrium values of COi
2 and COd

2. From these distributions, we can

calculate the standard deviation of the predictions, and we use these standard deviations
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to plot 95% confidence intervals around the predictions in main text Fig. 3. We perform

this block-bootstrapping procedure for each of the predictions that use fewer and fewer

simulations to produce all the confidence intervals plotted in Fig. 3b.

Text S6: Calculating the probability of the existence of bi-stability

The block-bootstrapping process described in Text S5 gives us distributions of estimated

values of COi
2 and COd

2 at infinitely slow ramping rates. Since the width of the “true”

hysteresis is the difference between COi
2 and COd

2, we can take the difference of these

distributions to estimate the likelihood that the hysteresis width is greater than zero and

thus that bi-stability and a tipping point exist. Using only experiments with a ramping

rate of 75 years/doubling or faster, in both Scenarios 1 or 2 we find that >95% of the

difference distribution (hysteresis width distribution) is greater than zero; in other words,

we can say that there is less than a 5% chance that bi-stability does not exist. Excluding

even more of the ramping experiments (which would be computationally expensive in a

GCM) to use only experiments with a ramping rate of 47.5 years/doubling or less, we

find that there is an >80% chance that bi-stability exists for both Scenarios 1 and 2. For

Scenario 3 (which we know does not have bi-stability), no matter how many experiments

we exclude there is never more than 55% chance that bi-stability exists; in fact, when using

few experiments the distribution skews towards predicting a negative width of hysteresis,

an unphysical result that may itself suggest the lack of bi-stability. These statistical tests

can be used to estimate the binary existence or non-existence of tipping points, in addition

to the method for predicting of the CO2 location of tipping points presented in the main

text.

Text S7: An alternate approach for predicting the equilibrium structure of

sea ice

Another approach for inferring the equilibrium structure of sea ice from transient runs

only would be to analyze only the difference between COi
2 and COd

2 (i.e., the hysteresis

width) as a function of the ramping rate instead of the two values separately and fit a

curve to see if this width approaches zero (no bi-stability) at infinitely slow ramping rates.

We perform this analysis in Figure S10 and find that it successfully identifies bi-stability

in the Scenarios. However, unlike the method in Fig. 4, this method does not provide

any prediction of the CO2 value of the tipping point (in Scenarios 1 and 2), so we suggest

it is used in addition to, but not in place of, the method in the main text.
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αi αmp αo Equilibrium behavior
Scenario 1 .75 .45 .1 wide bi-stability
Scenario 2 .5 .4 .2 narrow bi-stability
Scenario 3 .4 .4 .4 no bi-stability

Table S1. Model configurations leading to wide, narrow, and no bi-stability regimes. The
symbols αi, αmp, and αo, refer to the albedo of bare ice, melt ponds, and open ocean respectively.
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Figure S1. A comparison of our seasonal cycle of insolation to that of Eisenman (2007).
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Figure S2. A subset our CO2 hysteresis experiments (ramp up, hold CO2 fixed, ramp down)
compared to the ramping rate of the RCP8.5 Scenario in CMIP5 (which is nearly the same as
the ramping rate of SSP585 in CMIP6). Exponential increases in the concentration of CO2 in
time lead to linear increases of the CO2 radiative forcing.
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Figure S3. All four state variables of the sea ice model from Scenario 1 (wide bi-stability)
runs, shown as their March monthly averages: sea ice effective thickness (a), sea ice fraction (b),
mixed layer temperature (c), and sea ice temperature (d). Legend and coloring are the same as
in Fig. 1 in the main text.
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Figure S4. Same as Figure S3, but for Scenario 2 (narrow bi-stability).
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Figure S5. Same as Figure S3, but for Scenario 3 (no bi-stability).
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Figure S6. Results from a version of the cubic ODE that is periodically forced (eq. 11).
Panels a-c show transient (red and blue colored lines) and fixed-forcing (black lines) simulations
for Scenarios 1, 2, and 3 respectively. Panel d shows the maximum gradient of x with respect to
the forcing parameter β during transient simulations versus the ramping rate of each simulation
for all three scenarios.
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Figure S7. Maximum rate of change of March sea ice effective thickness (a) and maximum rate
of change of the variable x from the cubic ODE (b) during time-dependent forcing simulations.
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Figure S8. Schematic of the upper limit on max(dx/dt) during the bifurcation for the equation
dx/dt = −x3 + 5x − µt (Scenario 1 for the cubic ODE in the main text). The points x∗

a and
x∗
b represent the two stable equilibria before the bifurcation; when the bifurcation happens, x∗

a

disappears and the solution must transition to x∗
b . The variable c, represents the upper limit on

max(dx/dt), and c0 is the value of c at the time of the bifurcation, which is also the width of the
true bi-stability.
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Figure S9. Visualization of how the two edges of the rate-dependent hysteresis (COi
2 and

COd
2) are calculated, demonstrated for Scenario 2 only. COi

2 and COd
2 are shown for a subset of

the ramping rates as the block dots, and are the CO2 values at which March ice fraction crosses
a critical threshold (fraction of .5, shown in gray) along increasing and decreasing CO2 forcing
simulations respectively (see Methods in main text). As indicated by the gray arrows, we can see
that for slower and slower ramping rates, COi

2 and COd
2 are converging to the width of bi-stability

in the equilibrium.
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Figure S10. An alternate method for estimating the equilibrium hysteresis width. Here,
we fit a single curve to the difference between COi

2 and COd
2, which gives the rate-dependent

hysteresis width. We use the same polynomial function fit and block-bootstrapping approach
for estimating the uncertainty as done for the main text Figure 4. The left panels show the
rate-dependent hysteresis width at different ramping rates as scatter points, the polynomial fit
to this width as a dashed line, the true equilibrium hysteresis width as ×’s, and ±2σ around
the predicted equilibrium hysteresis width as gray shading. The right panels show the resulting
predictions of equilibrium hysteresis width (gray dots) and the ±2σ uncertainty around them
(gray bars) as the most gradual ramping experiments are sequentially removed from the fitting
process. We can see that this method successfully identifies a non-zero equilibrium hysteresis
width for Scenarios 1 and 2, even as several runs are excluded from the prediction, and correctly
identifies an equilibrium hysteresis width of zero for Scenario 3.
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Figure S11. Predicting the equilibrium hysteresis width in a simple cubic ODE. We show that
the same method described in the main text and applied in the context of sea ice can be used to
predict the equilibrium structure of Eqn. 1 using only transient runs. In the left panels, the blue
and red scatter points show the rate-dependent hysteresis width edges, the dashed lines show the
curves that fit them, the ×’s show the edges of the true equilibrium hysteresis found from fixed
forcing runs, and the shaded bars indicate ±2σ around the predicted edges of the equilibrium
hysteresis. The right panel shows the predictions of the equilibrium hysteresis edges (dots) as
the most gradual runs are sequentially excluded from the function fitting, and the uncertainty
around these predictions in the shaded bars. In this simple system, we predict the location of
the edges of the equilibrium hysteresis with very low uncertainty even when very few transient
runs are used to make the prediction.
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