Articles | Volume 27, issue 2
https://doi.org/10.5194/npg-27-187-2020
https://doi.org/10.5194/npg-27-187-2020
Research article
 | 
16 Apr 2020
Research article |  | 16 Apr 2020

Simulating model uncertainty of subgrid-scale processes by sampling model errors at convective scales

Michiel Van Ginderachter, Daan Degrauwe, Stéphane Vannitsem, and Piet Termonia

Related authors

Validation of the ALARO-0 model within the EURO-CORDEX framework
Olivier Giot, Piet Termonia, Daan Degrauwe, Rozemien De Troch, Steven Caluwaerts, Geert Smet, Julie Berckmans, Alex Deckmyn, Lesley De Cruz, Pieter De Meutter, Annelies Duerinckx, Luc Gerard, Rafiq Hamdi, Joris Van den Bergh, Michiel Van Ginderachter, and Bert Van Schaeybroeck
Geosci. Model Dev., 9, 1143–1152, https://doi.org/10.5194/gmd-9-1143-2016,https://doi.org/10.5194/gmd-9-1143-2016, 2016
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Quantum data assimilation: a new approach to solving data assimilation on quantum annealers
Shunji Kotsuki, Fumitoshi Kawasaki, and Masanao Ohashi
Nonlin. Processes Geophys., 31, 237–245, https://doi.org/10.5194/npg-31-237-2024,https://doi.org/10.5194/npg-31-237-2024, 2024
Short summary
Comparative study of strongly and weakly coupled data assimilation with a global land–atmosphere coupled model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
Nonlin. Processes Geophys., 30, 457–479, https://doi.org/10.5194/npg-30-457-2023,https://doi.org/10.5194/npg-30-457-2023, 2023
Short summary
Reducing manipulations in a control simulation experiment based on instability vectors with the Lorenz-63 model
Mao Ouyang, Keita Tokuda, and Shunji Kotsuki
Nonlin. Processes Geophys., 30, 183–193, https://doi.org/10.5194/npg-30-183-2023,https://doi.org/10.5194/npg-30-183-2023, 2023
Short summary

Cited articles

Baker, L. H., Rudd, A. C., Migliorini, S., and Bannister, R. N.: Representation of model error in a convective-scale ensemble prediction system, Nonlin. Processes Geophys., 21, 19–39, https://doi.org/10.5194/npg-21-19-2014, 2014. a, b, c, d
Banacos, P. C. and Schultz, D. M.: The Use of Moisture Flux Convergence in Forecasting Convective Initiation: Historical and Operational Perspectives, Weather Forecast., 20, 351–366, https://doi.org/10.1175/WAF858.1, 2005. a
Berner, J., Shutts, G. J., Leutbecher, M., and Palmer, T. N.: A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System, J. Atmos. Sci., 66, 603–626, https://doi.org/10.1175/2008JAS2677.1, 2009. a
Berner, J., Achatz, U., Batté, L., Bengtsson, L., Cámara, A. D. L., Christensen, H. M., Colangeli, M., Coleman, D. R. B., Crommelin, D., Dolaptchiev, S. I., Franzke, C. L. E., Friederichs, P., Imkeller, P., Järvinen, H., Juricke, S., Kitsios, V., Lott, F., Lucarini, V., Mahajan, S., Palmer, T. N., Penland, C., Sakradzija, M., von Storch, J.-S., Weisheimer, A., Weniger, M., Williams, P. D., and Yano, J.-I.: Stochastic Parameterization: Toward a New View of Weather and Climate Models, B. Am. Meteorol. Soc., 98, 565–588, https://doi.org/10.1175/BAMS-D-15-00268.1, 2017. a
Boisserie, M., Arbogast, P., Descamps, L., Pannekoucke, O., and Raynaud, L.: Estimating and diagnosing model error variances in the Météo-France global NWP model, Q. J. Roy. Meteor. Soc., 140, 846–854, https://doi.org/10.1002/qj.2173, 2014. a
Download
Short summary
A generic methodology is developed to estimate the model error and simulate the model uncertainty related to a specific physical process. The method estimates the model error by comparing two different representations of the physical process in otherwise identical models. The found model error can then be used to perturb the model and simulate the model uncertainty. When applying this methodology to deep convection an improvement in the probabilistic skill of the ensemble forecast is found.