Articles | Volume 31, issue 1
https://doi.org/10.5194/npg-31-61-2024
https://doi.org/10.5194/npg-31-61-2024
Research article
 | 
30 Jan 2024
Research article |  | 30 Jan 2024

A new approach to understanding fluid mixing in process-study models of stratified fluids

Samuel George Hartharn-Evans, Marek Stastna, and Magda Carr

Related authors

A robust numerical method for the generation and simulation of periodic finite-amplitude internal waves in natural waters
Pierre Lloret, Peter J. Diamessis, Marek Stastna, and Greg N. Thomsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1121,https://doi.org/10.5194/egusphere-2024-1121, 2024
Short summary
The effect of strong shear on internal solitary-like waves
Marek Stastna, Aaron Coutino, and Ryan K. Walter
Nonlin. Processes Geophys., 28, 585–598, https://doi.org/10.5194/npg-28-585-2021,https://doi.org/10.5194/npg-28-585-2021, 2021
Short summary
Particle clustering and subclustering as a proxy for mixing in geophysical flows
Rishiraj Chakraborty, Aaron Coutino, and Marek Stastna
Nonlin. Processes Geophys., 26, 307–324, https://doi.org/10.5194/npg-26-307-2019,https://doi.org/10.5194/npg-26-307-2019, 2019
Short summary
Multi-scale phenomena of rotation-modified mode-2 internal waves
David Deepwell, Marek Stastna, and Aaron Coutino
Nonlin. Processes Geophys., 25, 217–231, https://doi.org/10.5194/npg-25-217-2018,https://doi.org/10.5194/npg-25-217-2018, 2018
Short summary
On the interaction of short linear internal waves with internal solitary waves
Chengzhu Xu and Marek Stastna
Nonlin. Processes Geophys., 25, 1–17, https://doi.org/10.5194/npg-25-1-2018,https://doi.org/10.5194/npg-25-1-2018, 2018
Short summary

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Transformation of internal solitary waves at the edge of ice cover
Kateryna Terletska, Vladimir Maderich, and Elena Tobisch
Nonlin. Processes Geophys., 31, 207–217, https://doi.org/10.5194/npg-31-207-2024,https://doi.org/10.5194/npg-31-207-2024, 2024
Short summary
Aggregation of slightly buoyant microplastics in 3D vortex flows
Irina I. Rypina, Lawrence J. Pratt, and Michael Dotzel
Nonlin. Processes Geophys., 31, 25–44, https://doi.org/10.5194/npg-31-25-2024,https://doi.org/10.5194/npg-31-25-2024, 2024
Short summary
An approach for projecting the timing of abrupt winter Arctic sea ice loss
Camille Hankel and Eli Tziperman
Nonlin. Processes Geophys., 30, 299–309, https://doi.org/10.5194/npg-30-299-2023,https://doi.org/10.5194/npg-30-299-2023, 2023
Short summary
On the interaction of stochastic forcing and regime dynamics
Joshua Dorrington and Tim Palmer
Nonlin. Processes Geophys., 30, 49–62, https://doi.org/10.5194/npg-30-49-2023,https://doi.org/10.5194/npg-30-49-2023, 2023
Short summary
Estimate of energy loss from internal solitary waves breaking on slopes
Kateryna Terletska and Vladimir Maderich
Nonlin. Processes Geophys., 29, 161–170, https://doi.org/10.5194/npg-29-161-2022,https://doi.org/10.5194/npg-29-161-2022, 2022
Short summary

Cited articles

Aghsaee, P., Boegman, L., and Lamb, K. G.: Breaking of Shoaling Internal Solitary Waves, J. Fluid Mech., 659, 289–317, https://doi.org/10.1017/S002211201000248X, 2010. a
Arthur, R. S. and Fringer, O. B.: The Dynamics of Breaking Internal Solitary Waves on Slopes, J. Fluid Mech., 761, 360–398, https://doi.org/10.1017/jfm.2014.641, 2014. a
Arthur, R. S., Koseff, J. R., and Fringer, O. B.: Local versus Volume-Integrated Turbulence and Mixing in Breaking Internal Waves on Slopes, J. Fluid Mech., 815, 169–198, https://doi.org/10.1017/jfm.2017.36, 2017. a
Boegman, L. and Ivey, G. N.: Flow Separation and Resuspension beneath Shoaling Nonlinear Internal Waves, J. Geophys. Res.-Oceans, 114, 2018, https://doi.org/10.1029/2007JC004411, 2009. a
Bourgault, D., Morsilli, M., Richards, C., Neumeier, U., and Kelley, D. E.: Sediment Resuspension and Nepheloid Layers Induced by Long Internal Solitary Waves Shoaling Orthogonally on Uniform Slopes, Cont. Shelf Res., 72, 21–33, https://doi.org/10.1016/j.csr.2013.10.019, 2014. a
Download
Short summary
Across much of the ocean, and the world's lakes, less dense water (either because it is warm or fresh) overlays denser water, forming stratification. The mixing of these layers affects the distribution of heat, nutrients, plankton, sediment, and buoyancy, so it is crucial to understand. We use small-scale numerical experiments to better understand these processes, and here we propose a new analysis tool for understanding mixing within those models, looking at where two variables intersect.