Articles | Volume 31, issue 4
https://doi.org/10.5194/npg-31-559-2024
https://doi.org/10.5194/npg-31-559-2024
Research article
 | 
05 Dec 2024
Research article |  | 05 Dec 2024

Dynamically optimal models of atmospheric motion

Alexander G. Voronovich

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea
Linghan Meng, Haibin Song, Yongxian Guan, Shun Yang, Kun Zhang, and Mengli Liu
Nonlin. Processes Geophys., 31, 477–495, https://doi.org/10.5194/npg-31-477-2024,https://doi.org/10.5194/npg-31-477-2024, 2024
Short summary
Solving a North-type energy balance model using boundary integral methods
Aksel Samuelsberg and Per Kristen Jakobsen
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-11,https://doi.org/10.5194/npg-2024-11, 2024
Revised manuscript accepted for NPG
Short summary
Review article: Interdisciplinary perspectives on climate sciences – highlighting past and current scientific achievements
Vera Melinda Galfi, Tommaso Alberti, Lesley De Cruz, Christian L. E. Franzke, and Valerio Lembo
Nonlin. Processes Geophys., 31, 185–193, https://doi.org/10.5194/npg-31-185-2024,https://doi.org/10.5194/npg-31-185-2024, 2024
Short summary
Variational techniques for a one-dimensional energy balance model
Gianmarco Del Sarto, Jochen Bröcker, Franco Flandoli, and Tobias Kuna
Nonlin. Processes Geophys., 31, 137–150, https://doi.org/10.5194/npg-31-137-2024,https://doi.org/10.5194/npg-31-137-2024, 2024
Short summary
Sensitivity of the polar boundary layer to transient phenomena
Amandine Kaiser, Nikki Vercauteren, and Sebastian Krumscheid
Nonlin. Processes Geophys., 31, 45–60, https://doi.org/10.5194/npg-31-45-2024,https://doi.org/10.5194/npg-31-45-2024, 2024
Short summary

Cited articles

Eckart, C.: Variational principles of hydrodynamics, Phys. Fluids, 3, 421–427, 1960. 
Eldred, C., Dubos, T., and Kritsikis, E.: A quasi-Hamiltonian discretization of the thermal shallow water equations, J. Comput. Phys., 379, 1–31, https://doi.org/10.1016/j.jcp.2018.10.038, 2019. 
Gawlik, E. S. and Gay-Balmaz, F.: A variational finite element discretization of compressible flow, Found. Comput. Math., 21, 961–1001, https://doi.org/10.1007/s10208-020-09473-w, 2021. 
Goncharov, V. P., Krasil'nikov V. A., and Pavlov, V. I.: A contribution to the theory of wave interactions in stratified media, Izv. Atmos. Ocean. Phy.+, 12, 1143–1151, 1976. 
Lew, A., Mardsen, J. E., Ortiz, M., and West, M.: An overview of variational integrators, in: Finite Element Methods: 1970's and Beyond, edited by: Franca, L. P., CIMNE, Barcelona, Spain, 2003. 
Download
Short summary
A derivation of discrete dynamical equations for the dry atmosphere without dissipative processes based on the least action principle is presented. For a given set of generally irregularly spaced grid points and a given mode of interpolation, through the minimization of action, the algorithm ensures maximal closeness of the evolution of the discrete system to the motion of the continuous atmosphere. The spatial resolution can be adjusted while executing calculations.