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Abstract. A derivation of discrete dynamical equations for the dry atmosphere in the absence of dissipative
processes based on the least action (i.e. Hamilton’s) principle is presented. This approach can be considered the
finite-element method applied to the calculation and minimization of the action. The algorithm possesses the
following characteristic features:

1. For a given set of grid points and a given forward operator (i.e. the mode of interpolation), through the
minimization of action, the algorithm ensures maximal closeness (in a broad sense) of the evolution of the
discrete system to the motion of the continuous atmosphere (a dynamically optimal algorithm).

2. The grid points can be irregularly spaced, allowing for variable spatial resolution.

3. The spatial resolution can be adjusted locally while executing calculations.

4. By using a set of tetrahedra as finite elements the algorithm ensures a better representation of the topography
(piecewise linear rather than staircase).

The algorithm automatically calculates the evolution of passive tracers by following the trajectories of the
fluid particles, which ensures that all tracer properties required a priori are satisfied. For testing purposes, the
algorithm is realized in 2D, and a numerical example representing a convection event is presented.

1 Introduction

The models simulating atmospheric dynamics are often built
by replacing spatial and temporal derivatives in the continu-
ous equations of motion (like conservation of momentum or
mass) by corresponding finite-difference approximations. In
finite-volume versions, the discrete approximations of spa-
tial derivatives are also used for calculation of fluxes. There
are numerous ways to proceed based on experience accumu-
lated amongst different disciplines. The approaches that start
from the continuous equations of motion and are pursued
along these lines essentially ignore, however, the fact that
the governing equations representing atmospheric dynamics
themselves follow from the least action, or Hamilton’s, prin-
ciple (Eckart, 1960; Salmon, 1983) (LAP for brevity), and it
is reasonable to take advantage of this fact. LAP states that
the action, which is a time integral of the difference between
the total kinetic and potential energy (i.e. the Lagrangian) of
the system, is minimal for the actual evolution of a mechani-

cal system. Application of LAP leads to the Euler–Lagrange
equations of motion, which include the second-order deriva-
tives of the state variables in time. By using the Liouville
transformation, these equations can be cast into the Hamil-
tonian equations, which, being resolved with respect to the
first-order time derivatives, are thus better amenable to both
analytical and numerical solutions (Salmon, 1988).

To build a computer model of atmospheric motion, one has
to pass from a continuous to a discrete system. There are at
least two ways to achieve this within the Lagrangian/Hamil-
tonian approach. The first one is to replace a continuous
Hamiltonian or Lagrangian by a discrete analogue (Salmon,
1983). If the Hamiltonian equations are formulated in non-
canonical coordinates (e.g. Rolstone and Bruce, 1995), one
also has to approximate the Poisson bracket (Eldred et al.,
2019; Salmon, 2004). By maintaining corresponding sym-
metries, one also tries to ensure that the conservation laws of
the original equations are inherited by the discretized ones as
well (Salmon, 2004). An important advantage of the Hamil-
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tonian and Lagrangian descriptions is that different approxi-
mations (like quasi-hydrostatic) can be done within this ap-
proach by modifying the corresponding Hamiltonian or La-
grangian (Shutts, 1989; Salmon and Smith, 1994; Rolstone
and Bruce, 1995).

The second way is after selection of a discrete set of pa-
rameters (i.e. the finite number of degrees of freedom) to ap-
proximate an action of the continuous atmosphere. To do this,
one has also to choose an observation (or forward) operator,
i.e. a mode of interpolation allowing the state of the atmo-
sphere to be unambiguously calculated at any spatial point
based on the set of discrete parameters. Using this operator,
one calculates approximately the action density of the con-
tinuous atmosphere in terms of the discrete parameters; in-
tegrates it over the space; and, by minimizing the result, ob-
tains ordinary differential equations (ODEs) governing their
evolution. Such an approach seems to be more consistent
than approximating a Hamiltonian or Lagrangian. From this
standpoint replacement of the continuous Hamiltonian/La-
grangian by a discrete analogue can be considered to be a
piecewise-constant spatial approximation of the correspond-
ing density. One can, however, use more accurate approx-
imations; in this work, in particular, a piecewise-linear ap-
proximation is applied instead. In this case, the fields of at-
mospheric variables become piecewise continuous. One can
refer to such atmospheric models as “dynamically optimal”,
since for a given set of discrete parameters and a given mode
of interpolation, the governing ODEs follow unambiguously,
ensuring minimal action and thus the best approximation
(from the standpoint of action minimization) of the dynamics
of a continuous atmosphere. Such an approach is essentially
a combination of the finite-element method and LAP.

The approach based on approximation of continuous ac-
tion was considered recently in Gawlik and Gay-Balmaz
(2021). In this work, however, an action of the compress-
ible atmosphere was calculated in non-canonical coordinates,
which leads to a minimization of action under certain con-
straints on variations. This interesting technique differs sig-
nificantly from the approach pursued in this paper where the
action is calculated in the canonical coordinates and there are
no restrictions on the coordinates/momenta variations.

We are considering in this work the approximation of
the action in a spatial domain by assuming only continu-
ous dependence on time. However, one can discretize the
calculation of action, not only in the spatial domain but
in the time domain as well. Corresponding discrete time-
evolution schemes are called variational integrators (Mard-
sen and West, 2001; Lew et al., 2003). Such an approach
allows us to also use different time steps in different ar-
eas (asynchronous variational integrators), an option which
should be of interest to the development of dynamical cores
for weather and climate prediction models.

2 The action for a continuous atmosphere

This section describes mostly standard transformations
(see, for example, Eckart,1960; Salmon,1988; Shutts,1989;
Salmon and Smith, 1994) that precede the transition from
continuous to discrete forms for the governing equations.
Here, we will consider the case of a dry, rotating atmosphere,
which is a base of a dynamical core. We begin with the fol-
lowing Eulerian equations that represent the adiabatic motion
of dry air in the absence of losses:

∂tv+ (v · ∇)v+∇φ+ 2�× v+
∇P

ρ
= 0,

∂tρ+∇ · (ρv)= 0,
∂t s+ (v · ∇)s = 0. (1)

Here, the usual notation is used, with s being entropy per
unit mass, φ the geopotential and � an angular velocity vec-
tor. The pressure P = P (α,s) is considered to be a func-
tion of the specific volume α = 1/ρ and entropy (to distin-
guish pressure from a conjugated momentum p to be intro-
duced later, we denote pressure with a capital letter). In the
Lagrangian coordinates, these equations reduce to a single
equation

∂2
t ξ +∇φ+ 2�× ∂tξ +

∇P

ρ
= 0, (2)

where ξ = ξ (t,a) is the displacement of a fluid particle from
its original location at a. The entropy, which for a given fluid
particle is conserved, is determined by its initial spatial dis-
tribution s0:

s = s0(a).

The density ρ in Eq. (2) follows from mass conservation
and is given by the equation

ρ(t,a)= ρ0(a)
∣∣∣∣ ∂(r)
∂(a)

∣∣∣∣−1

= ρ0(a)
∣∣∣∣∂(a+ ξ )
∂(a)

∣∣∣∣−1

= ρ0(a)
∣∣∣∣1+ ∂(ξ )

∂(a)

∣∣∣∣−1

, (3)

where r = a+ ξ is the Cartesian coordinate of a fluid parti-
cle, | | denotes the determinant of the corresponding matrix
and ρ0(a) is the spatial distribution of density at t = 0. Equa-
tion (2) represents Newton’s second law. Note that the gradi-
ents in this equation are taken with respect to the Cartesian r
rather than a coordinates.

The action A in the general case is defined as follows:

A=

t1∫
t0

L∗(qi, q̇i)dt, (4)

where qi is a set of arbitrary parameters characterizing the
system state, and q̇i denotes their time derivatives. The in-
dex i can be either discrete or continuous. The “star” index
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in L∗ is introduced to distinguish the total Lagrangian L∗
from its (spatial) density L= dL∗/da, where da means an
element of volume with respect to a coordinates. The least
action principle

δA= 0 (5)

results in the following (Euler–Lagrange) evolution equa-
tions:

d
dt
∂L∗

∂q̇i
−
∂L∗

∂qi
= 0. (6)

We now demonstrate that Eq. (2) follows from LAP (Eq. 5)
for

L∗(ξ ,∂tξ )=
∫
L(ξ ,∂tξ ,a)da,

with the Lagrangian density L defined as follows:

L(ξ ,∂tξ ,a)= ρ0(a)
{

1
2

(∂tξ )2
−E(α,s0(a))

− g(n · ξ )−� · (∂tξ × ξ )
}
. (7)

In Eq. (7), E(α,s) is the internal energy of the dry air per
unit mass, n is a unit vector directed upwards along the gra-
dient of geopotential and g is its magnitude.

Let us calculate variation of the total energy with re-
spect to ξ , taking into account that according to the ba-
sic thermodynamic identity T ds = dE+P dα, one has P =
−(∂E/∂α)s:

δ

∫
ρ0(a)E(α,s0(a))da =

∫
ρ0
∂E

∂α
δαda

=−

∫
ρ0Pδ

(
1

ρ0(a)

∣∣∣∣ ∂r∂a
∣∣∣∣)da

= −

∫
P

3∑
i,j=1

Cij
∂

∂aj
δξida

= −

∫
(N · δξ )P d6

+

∫ 3∑
i,j=1

∂P

∂aj
Cij δξida.

Here, Cij is the cofactor of the (i,j )th entry of matrix
∂r/∂a (i.e. the determinant of this matrix with the ith row
and j th column deleted multiplied by (−1)i+j ). Integration
by parts (i.e. use of the Gauss theorem) leads to appearance
of the first (surface) term, with N being a unit outward nor-
mal to the boundary of the medium6. It is easy to make sure
that

∑
j

∂Cij/∂aj = 0; for this reason, the derivatives of Cij

in the equation above are absent. Considering that the matrix

of cofactors transposed is proportional to the inverse matrix,
one has

Cij =

∣∣∣∣ ∂r∂a
∣∣∣∣
((

∂r

∂a

)−1
)
ji

=

∣∣∣∣ ∂r∂a
∣∣∣∣ ∂aj∂ri .

Taking into account that according to Eq. (3), |∂r/∂a| =
ρ0/ρ, one finds

3∑
j=1

∂P

∂aj
Cij =

ρ0

ρ

3∑
j=1

∂P

∂aj

∂aj

∂ri
=
ρ0

ρ

∂P

∂ri
,

where now P in the last equation above is considered to be a
function of r rather than a. As a result, we obtain

δ

∫
ρ0(a)E(α,s0(a))da = −

∫
(N · δξ )P d6

+

∫
ρ0

ρ

∂P

∂r
· δξda. (8)

Now, calculating the variation of the action Eqs. (4) and (7)
and integrating terms proportional to ∂tδξ by parts with re-
spect to time yields

δA= −

∫
dtdaρ0(a)

(
∂2
t ξ + gn+ 2�× ∂tξ

+
1
ρ

∂P

∂r

)
· δξ +

∫
(N · δξ )P d6dt. (9)

We can see that the requirement δA= 0 in Eq. (9) for inter-
nal points in fact coincides with Eq. (2). The internal energy
of dry air E = CVT in terms of the variables (α,s) is given
by

E(α,s)=
p00α

γ

00
γ − 1

α1−γ es/CV , (10)

where p00 and α00 are reference values of pressure and spe-
cific volume, and γ = CP/CV is, as usual, the ratio of specific
heats.

To derive a set of numerically accessible dynamical equa-
tions that adequately describe the evolution of the continuous
atmosphere requires one additional standard step. One diffi-
culty is that the left-hand side (LHS) of Eq. (6) in the dis-
crete case will generally contain a mix of second derivatives
of the discrete coordinates q̈i with different indices, and as
they are not being resolved with respect to q̈i , the resulting
equations are ill-suited for numerical solution. This issue can
be resolved by representing Eq. (6) in the Hamiltonian form.
Namely, we introduce the momenta pi according to the rela-
tion

pi =
∂L∗

∂q̇i
(11)

and express q̇i from these equations as functions of q and p.
From this point forward, the variable p will stand for con-
jugated momentum. We introduce the Hamiltonian H∗(q,p)
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instead of the Lagrangian L∗(q, q̇) according to the equation

H∗(q,p)=
∑
i

q̇ipi −L∗(q, q̇), (12)

where all q̇i values have been expressed as functions of q and
p, as noted above. It is not difficult to show using Eqs. (11)
and (12) that the following (Hamiltonian) equations hold:

q̇i =
∂H∗

∂pi
, ṗi =−

∂H∗

∂qi
. (13)

These expressions follow by applying LAP (Eq. 5) to

A=

t1∫
t0

{∑
i

q̇ipi −H∗(q,p)

}
dt (14)

and varying the variables qi and pi independently. In what
follows, we will only be using LAP in this form.

Substituting Eq. (7) into Eq. (11), we obtain

p(t,a)=
∂L(ξ ,∂tξ ,a)
∂(∂tξ )

= ρ0(a)(∂tξ +�× ξ ). (15)

Expressing ∂tξ in terms of p and ξ and substituting the re-
sult into Eq. (12) after simple transformations for the density
of the Hamiltonian yields

H (ξ ,p;a)=
(p− ρ0(a)�× ξ )2

2ρ0(a)

+ ρ0(a)E(α,s0(a))+ gρ0(a)(n · ξ ). (16)

The Hamiltonian equations (Eq. 13) read

∂tξ =
δH

δp
=
p− ρ0(a)�× ξ

ρ0(a)

∂tp = −
δH

δξ
= (p− ρ0(a)�× ξ )×�− gρ0(a)n

−
ρ0(a)
ρ

∂P

∂r
.

By differentiating the first of these equations with respect
to time and inserting ∂tp from the result using the second
equation, we make sure that the result coincides in fact with
Eq. (2).

Finally, the expression in Eq. (14) for the action for the
continuous atmosphere reduces to

A=

t1∫
t0

dt
∫

da
{
p · ∂tξ −

(p− ρ0[�,ξ ])2

2ρ0(a)

− ρ0(a)E(α,s0(a))− gρ0(a)(n · ξ )
}
. (17)

3 The action for a discrete atmospheric model

We now need to select a set of discrete parameters that rep-
resent a continuous atmosphere and a way of interpolating
these parameters to an arbitrary spatial point. The model that
will be used here is as follows. We split the region of inter-
est into a set of unstructured connected tetrahedra that share
vertices, edges and faces. We select values for the displace-
ments ξ and momenta p, as well as the density ρ0 and spe-
cific entropy s0, at the vertices, which define a set of dis-
crete parameters that represent the continuous atmosphere.
To calculate corresponding parameters at an arbitrary point
within each tetrahedron, we will be using linear interpola-
tion. We note that four values of a parameter at the four
vertices of a tetrahedron completely determine its linear in-
terpolation within the tetrahedron. The piecewise-linear in-
terpolation ensures a globally continuous representation of
the corresponding fields throughout the region. Derivatives
along the faces of tetrahedra are also continuous; however,
derivatives across the faces experience jumps, which for a
sufficiently dense set of tetrahedra are negligible. Let us also
note that such interpolation ensures calculation of the action
to the accuracy of the square of the ratio of a linear size of
the tetrahedra to a spatial scale of variations of atmospheric
parameters.

We can now approximate the action A by Ã, where

A≈ Ã=
∑
T

AT , (18)

where the index T stands for an individual tetrahedron, and
the summation aggregates the contribution from all tetrahe-
dra. The actionAT is calculated according to Eq. (17), where
the integral is over the volume occupied by the T th tetrahe-
dron.

Let us consider the first term p · ∂tξ in Eq. (17). The fol-
lowing relation can be shown to hold true for two linear func-
tions of coordinates u(a) and v(a) defined within a tetrahe-
dron by linear approximations based on their values ui , vi
and i = 1,2,3,4 at the vertices of the tetrahedron:∫
T

u(a)v(a)da =
|VT |

4

( 4∑
i=1

uivi

−
1
2

4∑
i,j=1

(ui − uj )(vi − vj )
)
. (19)

Here |VT | is the tetrahedron’s volume. The same equa-
tion also holds in the 2D case, with the 1/4 factor replaced
by 1/3 and summations proceeding from 1 to 3. For smooth
fields, the differences in the second term in the right-hand
side (RHS) of Eq. (19) will be proportional to the ratio of the
linear size of the tetrahedron to the characteristic scale of the
parameter’s variation, and the magnitude of the entire sec-
ond term will be proportional to the square of this ratio and
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can generally be neglected when compared to the first term
in Eq. (19). We then find∫
T

p · ∂tξda ≈
|VT |

4

4∑
i=1

pi · ∂tξ i . (20)

Here and below, vector symbols (bold italic) indicate
3D vectors, and indices correspond to vertices. Dots between
vectors denote scalar products with respect to 3D vector co-
ordinates, correspondingly. We note, however, that the ne-
glected term in Eq. (19) can be retained by replacing (to a
first approximation) the differences ∂tξ i−∂tξ j in Eq. (19) by
∂H/∂pi − ∂H/∂pj . This will result in the following mod-
ification to the Hamiltonian density in Eq. (16) within the
corresponding tetrahedron:

H (ξ ,p;a)→H (ξ ,p;a)−
1
8

4∑
i,j=1

(pi−pj )·
(
∂H

∂pi
−
∂H

∂pi

)
.

The transition from a continuous to discrete description of
the mechanical system based on the approximation of action,
which is pursued here, differs from the more customary ap-
proximation of a continuous Hamiltonian by a discrete ana-
logue (Salmon, 1983).

Using Eq. (20) we can represent the action as

Ã=

t1∫
t0

dt
∑
T

|VT |

(
1
4

∑
n(T )

pn(T ) · ∂tξn(T )

− H̃T (ξn(T ),pn(T ))
)
, (21)

where

H̃T (ξn(T ),pn(T ))=
1
|VT |

∫
T

H (ξ ,p;a)da (22)

is the Hamiltonian in Eq. (16) integrated over the T th tetra-
hedron and normalized by its volume. H̃T is a function of
shifts and momenta at the vertices of the tetrahedron ξn(T )
and pn(T ), where n(T ) stands for indices of the set of four
vertices of the T th tetrahedron. In Eq. (21), we now replace
the summation over tetrahedra with a summation over ver-
tices and represent it in the following form:

Ã=

t1∫
t0

dt
∑
k

(
vkpk · ∂tξ k

−

∑
τ⊂T (k)

|Vτ |H̃τ (ξn(τ ),pn(τ ))
)
. (23)

Here, T (k) represents indices of the tetrahedra that con-
tain the vertex with index k, and the summation within the
outward parentheses in Eq. (23) aggregates the contribution

over all such tetrahedra. The parameter vk is a quarter of the
sum of their volumes:

vk =
1
4

∑
τ⊂T (k)

|Vτ |. (24)

Equation (23) describes an approximation of the action for
a continuous atmosphere in terms of a finite set of discrete
parameters. We can now write the equation for the evolution
of these parameters by minimizing Ã in Eq. (23) as

∂tξ k =
1
vk

∑
τ⊂T (k)

|Vτ |
∂

∂pk
H̃τ (ξn(τ ),pn(τ )),

∂tpk =−
1
vk

∑
τ⊂T (k)

|Vτ |
∂

∂ξ k
H̃τ (ξn(τ ),pn(τ )). (25)

Note that the action in Eq. (23) can be cast precisely into
the form in Eq. (14) by rescaling coordinates and momenta,
thus making the corresponding system explicitly Hamilto-
nian, although this step is not needed here. Since the approx-
imate action is invariant with respect to shifts in time, the
approximate energy is conserved. Similarly, if the exact ac-
tion is invariant with respect to geometrical transformations
like shifts in space or rotations, the approximate action will
inherit this property along with corresponding conservation
laws. In this case conservation will be exact; however, the
conserved values will be calculated approximately.

Equation (25) can be solved numerically using a suitable
integration scheme (e.g. Runge–Kutta). There are also time-
integration schemes that conserve energy exactly (namely
symplectic (Eldred et al., 2019) and variational (Mardsen and
West, 2001; Lew et al., 2003)).

3.1 Lagrangian reassignment

To be able to repeat the time step, we have to reassign values
of momenta pk at corresponding vertices, whose locations ak
are fixed in space. The familiar procedure of the Lagrangian
reassignment (a.k.a. semi-Lagrangian advection, Lagrangian
remapping, etc.) is detailed in this subsection in conjunction
with the linear interpolation employed in this work. We em-
phasize that ξ k and pk in Eq. (25) are Lagrangian coordi-
nates, and pk(1t) is the momentum of a fluid particle which
at t =1t is located at a point rk = ak+ξ k(1t) and not at ak .
For this reason, we have to first determine which particle
moved to ak at t =1t and then calculate its momentum us-
ing the forward operator (i.e. linear interpolation). This value
will be an initial condition for pk in Eq. (25) for the next time
step. The initial values of entropy and passive tracers will
also correspond to the fluid particle that moved to ak . These
should be reassigned as well. The initial values of shifts are
always ξ k = 0. By making these reassignments, we are es-
sentially returning to the Eulerian description of fluid mo-
tion.

To determine the initial location of a fluid particle that ar-
rived at a point R at a time t =1t , we proceed as follows.
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The position of an arbitrary point within a tetrahedron can be
expressed as follows:

r = a4+ (a1− a4)τ1+ (a2− a1)τ2+ (a3− a2)τ3, (26)

where ai denotes the Cartesian coordinates of the ith ver-
tex of the tetrahedron, and the fourth vertex was arbitrar-
ily selected in Eq. (26) as a base point. For the point r to
be within the tetrahedron, the scalar dimensionless parame-
ters τi (which have nothing to do with τ in Eqs. (24) and (25))
should satisfy

1> τ1 > τ2 > τ3 > 0. (27)

Due to the assumption of a linear dependence of the
shifts ξ on the Cartesian coordinates within a tetrahedron,
the fluid particle located at r at t = 0 at the end of a time
step at t =1t will experience a shift given by an expression
similar to Eq. (26), that is

ξ = ξ4+ (ξ1− ξ4)τ1+ (ξ2− ξ1)τ2+ (ξ3− ξ2)τ3, (28)

where ξ i , i = 1, . . .,4 are shifts of fluid particles located at
corresponding vertices at t = 0; these shifts are known as a
result of numerical integration of Eq. (25). The requirement
of the fluid particle to translate from a point r to a point R is
given by

r + ξ =R.

Substituting into this equation Eqs. (26) and (28), we ob-
tain the following vector linear equation with respect to the
parameters τi :

3∑
i=1

(ai − a4+ ξ i − ξ4)τi =R− a4− ξ4. (29)

The fluid particle can in principle arrive at the kth vertex
from any tetrahedron from the set T (k); however, the condi-
tion in Eq. (27) selects the appropriate tetrahedron.

The existence and uniqueness (non-degeneracy) of solu-
tions to Eq. (29) may be explained as follows. Let us con-
sider the trajectories of fluid particles. The fluid particle that
at t = 0 was located at the vertex with coordinates ai at a later
moment of time t will be located at a point r i(t)= ai+ξ i(t).
Points r i form vertices of a shifted tetrahedron onto which
the initial tetrahedron is mapped. Note that shifts ξ of the
fluid particles inside a tetrahedron are assumed to be lin-
ear functions of the shifts of the fluid particles located at
the vertices of the tetrahedron: this is our basic (linear) ap-
proximation of the forward operator (see the first paragraph
of Sect. 3). Thus, the initial tetrahedron with the vertices at
the points ai linearly (more precisely, affinely) mapped onto
a shifted tetrahedron with vertices at r i ; the transformation
is linear regardless of the trajectories of the fluid particles,
which started from the vertices ai being linear or curved.

In particular, faces and edges of the initial tetrahedron are
mapped onto corresponding faces and edges of the shifted
tetrahedron. Since shifts of the internal points of the tetra-
hedron are linear functions of coordinates, the Jacobian of
the linear transformation of the initial tetrahedron within it
is constant (the constants for different tetrahedrons are, of
course, also different, and they depend on time t). Thus,
piecewise linearity of the forward operator ensures that the
mapping of the whole initial volume onto the shifted volume
is also piecewise linear, and the mapping is one to one pro-
vided that neither tetrahedron in the course of evolution de-
generates (i.e. tetrahedra volumes never become zero). The
latter is achieved by adopting a Courant-limited time step
based on the fastest wave mode that the equations admit
(here, the sound speed), which also ensures that time inte-
gration errors remain small. Non-degeneracy of the initial
tetrahedrons can be checked easily, since trajectories of the
fluid particles at the vertices are calculated in the course of
numerical integration.

The value of any parameter within a tetrahedron at the
end of a time step is given by an expression quite similar
to Eq. (28). For example, the momentum at a time t =1t at
a vertex with Cartesian coordinate R is given by

p = p4+ (p1−p4)τ1+ (p2−p1)τ2+ (p3−p2)τ3, (30)

where pi = pi(1t) denotes the momenta which are also
known as a result of numerical integration of Eq. (25). The
parameters τi in Eq. (30) follow from the solution of Eq. (29).
The resulting p in Eq. (30) is the momentum, which has to be
reassigned to corresponding vertex as an initial condition for
the next time step. The specific entropy at the vertices should
also be redefined according to Eq. (30), where now the values
of s0 at t = 0 should be substituted for pi (since the entropy
of the fluid particle is conserved). All other passive tracers
should be similarly redefined. The value of the density ρ0 at
the kth vertex should be redefined using Eq. (3) with respect
to the same tetrahedron and the same fluid particles that were
used for recalculating the momentum and entropy (i.e. with
the same τi following from Eq. 29).

3.2 Local Hamiltonian calculation

We consider now the calculation of the Hamiltonian H̃ ,
which forms the basis of the numerical model. We note that
Eq. (25) describes the evolution of the model parameters and
includes the derivatives of H̃ . For simplicity, here, we as-
sign the indices n= 1,2,3,4 to the vertices of a tetrahedron.
We now recast the integration over a in Eq. (2) into an in-
tegration over the dimensionless parameters τ1,2,3 according
to Eq. (26). The functions ξ (a), p(a), ρ0(a) and s0(a) are
calculated according to the selected forward operator, i.e. by
linear approximation, quite similar to Eqs. (28) and (30):

f (τi)= f4+ (f1− f4)τ1+ (f2− f4)τ2+ (f3− f4)τ3, (31)
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where f is any parameter (vector or scalar), and fn is a value
of f at the nth vertex.

According to Eq. (25) we have

H̃T (ξn,pn)= 6

1∫
0

dτ1

τ1∫
0

dτ2

τ2∫
0

dτ3H (ξ (τn),p(τn);τn), (32)

whereH is given by Eq. (16) and ξ (τn) andp(τn) by Eq. (31).
Afterwards, the LHS of Eq. (32) becomes a function of the
values of the displacements ξ and momenta p at the vertices
of the tetrahedron. Note that since ξ is a linear function of co-
ordinates a, the Jacobian in Eq. (3) is a constant independent
of a, and we can write

α(τn)=
10(ξn)
ρ0(τn)

,

where 10(ξn) is the value of the Jacobian. The internal en-
ergy in Eq. (16) can then be expressed as

ρ0E(α,s0)=
p00α

γ

00
γ − 1

(10(ξ ))1−γ (ρ0(τn))γ

× exp
(
s0(τn)
CV

)
. (33)

To calculate the integral in Eq. (32) related to the inter-
nal energy term, we note that variations of density within a
tetrahedron are generally small and set

(ρ0(τn))γ = ργ4

(
1+

(
3∑
n=1

βnτn

))γ

= ρ
γ

4

(
1+ γ

(
3∑
n=1

βnτn

)

+
γ (γ − 1)

2

(
3∑
n=1

βnτn

)2

+ . . .

 , (34)

where the factors

βn =
ρn− ρ4

ρ4
(35)

are also small, so that one only needs to retain the first few
expansion terms in Eq. (34). One can similarly expand the
exponential term in Eq. (33) into a power series. In this case
calculation of the integral in Eq. (32) with respect to the inter-
nal energy term also reduces to an integration of polynomials
of τ1,2,3. Alternatively, one can leave the exponential term in
Eq. (33) as is since the exponent is a linear function of τ1,2,3,
and integrals of products of polynomials and exponentials
can be calculated analytically nearly as easily as integrals of
polynomials. In the first term in the RHS of Eq. (16) (the ki-
netic energy), we also expand 1/ρ0(τi) according to Eq. (34),
where now in place of γ we substitute−1. Then, the integra-
tions over τ1,2,3 in this term also reduce to an integration of
polynomials, and this is done analytically.

Now, we consider boundary conditions that follow from
LAP. They are due to the last (surface) term in Eq. (9) and
require that at the boundaries either the pressure or (N ,δξ )
is zero. Thus, without restrictions on the variations of shifts
of the boundary points, the pressure at the boundary should
be zero. Such a boundary condition can be applied reason-
ably to the top of the atmosphere (the issue of an absorbing
layer is beyond the scope of this paper) but is unacceptable
elsewhere. For such boundary points, we will assume that
both the shifts ξ k and momenta pk are prescribed functions
of time so that δξ k = 0. Equations for the corresponding k
are excluded from the set in Eq. (25). Note that p and ξ are
related through Eq. (15), and it is sufficient to prescribe a
time dependence to only one or the other. In particular, at the
bottom of the atmosphere, one can use the no-slip boundary
condition ξ = 0. To introduce different boundary conditions,
one would need to add corresponding terms to the expression
for the action.

Our numerical approach proceeds as follows. We intro-
duce an array of tendencies (i.e. the time derivatives ∂tξ k ,
∂tpk) with the total number of columns equal to the total
number of vertices – one column per vertex. To calculate
the RHS of the evolution equations in Eq. (25), we initiate
a loop not over vertices but over tetrahedra. After calculating
the derivatives ∂H̃τ /∂pk and ∂H̃τ /∂ξ k for all four vertices of
a particular tetrahedron (which results in eight vectors with
a total of 24 scalar parameters), we add/subtract the result
to/from the tendencies being accumulated in the correspond-
ing columns of the tendencies array. After all the tetrahedra
are accounted for, the RHS of Eq. (25) will appear automati-
cally. To execute this procedure, we also introduce an integer
array with the same number of columns, with each column
containing four indices of vertices belonging to a correspond-
ing tetrahedron.

The algorithm under consideration easily allows us to
modify the set of tetrahedra during simulations. If after a
time step one finds that in a particular region spatial reso-
lution should be increased, the corresponding tetrahedra are
split into two. Each split tetrahedron is flagged, and two new
tetrahedra are added. This operation can be repeated as many
times as necessary. Similarly, previously split tetrahedra can
be recombined into larger ones by reversing the process. The
evolution is then calculated with respect to the modified set
of tetrahedra.

4 A numerical example

The algorithm under consideration was tested for a 2D case
for simplicity. The Hamiltonian structure can be introduced
into the hydrodynamics in many different ways (Salmon,
1988), and the formulation used in this section is significantly
different from the one used in Sects. 2 and 3. It is important,
however, that the essence of the approach that is advocated
in this paper is still the same: approximation of the action
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using linear interpolation of canonical variables within cor-
responding simplexes. In the 2D case tetrahedra are replaced
by triangles and volumes by corresponding areas.

The following formulation was used in this section:

H =

∫
dVρ

[
1
2
v2
+ gz+E(ρ,s)+9(s)

]
, (36)

where

v =∇ϕ−
λ

ρ
∇s (37)

is velocity; ρ and s are the density and specific entropy, re-
spectively, which play the role of coordinates; and ϕ and
λ are conjugated momenta, which do not have a direct phys-
ical interpretation. A gauge function 9(s) is chosen to en-
sure hydrostatic equilibrium for the corresponding model of
the atmosphere. The Hamiltonian (Eq. 36) was suggested
in Goncharov et al. (1976), where the function 9(s) corre-
sponded to the isothermal atmosphere. Here, this function
was chosen for the more realistic case of an atmosphere with
a constant temperature gradient:

T (z)= T00

(
1−

z

H

)
. (38)

In this case, one sets

9(s)=−gH + (gH −CPT00)exp
(
−

s

β0CV

)
, (39)

where

β0 =
gH

CvT00
− γ.

The governing equations for the continuous case are as fol-
lows:

∂tρ =
δH

δϕ
=−∇(ρv),

∂tϕ =−
δH

δρ
=−v∇ϕ+

v2

2
− gz−

(
∂ρE

∂ρ

)
s
−9(s),

∂t s =
δH

δλ
=−v∇s,

∂tλ=−
δH

δs
=−∇(λv)− ρT − ρ9 ′(s). (40)

Similar to the approach presented in the previous sections,
we split the atmosphere into a set of triangles and linearly in-
terpolate all four prognostic variables (ρ,s,ϕ,λ) within the
triangles. The approximation in Eq. (20) was used for the ac-
tion, where the factor of 1/4 was replaced by 1/3 and the
volume by the area. The resulting discrete evolution equa-

tions are quite similar to Eq. (25) and are as follows:

∂tρk =
1
σk

∑
χ⊂T (k)

|6χ |
∂H̃χ

∂ϕk
,

∂tϕk =−
1
σk

∑
χ⊂T (k)

|6χ |
∂H̃χ

∂ρk
,

∂t sk =
1
σk

∑
χ⊂T (k)

|6χ |
∂H̃χ

∂λk
,

∂tλk =−
1
σk

∑
χ⊂T (k)

|6χ |
∂H̃χ

∂sk
, (41)

where now

H̃χ (ρn, sn,ϕn,λn)= 2

1∫
0

dτ1

τ1∫
0

dτ2

×H (ρ(τn), s(τn),ϕ(τn),λ(τn);τn). (42)

Here, H is given by Eq. (36), and χ,T (k) corresponds to
triangles instead of tetrahedra with

σk =
1
3

∑
χ⊂T (k)

|6χ |,

where |6χ | represents the area of the χ th triangle.
We note that the Hamiltonian in Eq. (36) can be applied

to the 3D case as well. For this case, however, we only have
two free parameters ϕ and λ to represent the velocity field in
Eq. (37), and this is generally insufficient. This problem can
be resolved by introducing two additional parameters into the
representation for the velocity in Eq. (37):

v =∇ϕ−
λ

ρ
∇s+ ζ∇µ. (43)

The form of the Hamiltonian in Eq. (36) and the procedure
for calculating the action do not change, and another pair of
equations needs to be added to Eq. (40) that correspond to
the conservation of ζ and µ along the trajectories of fluid
particles. Still, the Hamiltonian in Eq. (16) seems to be a
better option.

For our simulation, a standard atmosphere was chosen
with an effective height H = 4.5× 104 m and surface tem-
perature T00= 288 K (see Eq. 38; in this case β0 ≈ 0.75). A
section of the atmosphere with a total length of 500 km and
height of 3 km was split initially into 25 layers in the hori-
zontal and 15 layers in the vertical, which resulted in 750 tri-
angles. To simulate a convective event, we added a term qλ

to the Hamiltonian density in Eq. (36), so that the equation
for entropy in Eq. (40) (the first equation in the second line)
included an additional term equal to q in the RHS (a local
heat source). We assumed that the heat source had a Gaus-
sian shape, in both space and time, with characteristic scales
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Figure 1. Snapshots of the isolines of the entropy (potential temperature) field at selected times for the numerical example described in
Sect. 4 (distances along the axes are in km).

of 100 km in the horizontal, 500 m in the vertical and 200 s in
time. The source was centred at a height of 1 km. The maxi-
mal intensity of the heat source was chosen to be 0.6 Wkg−1,
which corresponds to a rain rate of 1 mmh−1. To simulate
the effects of topography, a hill of 500 m height, stretching
for 80 km in the horizontal (also of Gaussian shape) centred
at 125 km, was included. Boundary conditions correspond to
zero mass fluxes at the top and the bottom of the atmosphere,
and the motion was assumed periodic in the horizontal di-

rection. Our simulation lasted for 600 s, and a fourth-order
Runge–Kutta method was used for integration. To check the
functionality of the algorithm with respect to the splitting/re-
combination of the triangles, the code was forced to split
them if the difference in the intensity of the heat source at the
vertices exceeded a certain threshold and recombine them if
the difference was less than another threshold. The time step
used 1t = 0.25 s was rather small due to the fact that fast-
propagating sound waves are fully accounted for (see also
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the comment on uniqueness of mapping after Eq. 29). It was
found that mass was conserved to machine precision; con-
servation of energy was not checked because the numerical
example included heating of the atmosphere.

The isolines of entropy (i.e. potential temperature) are
plotted in a series of images as solid lines in Fig. 1 for five
snapshots in time. The triangles (a bit skewed due to pres-
ence of the hill) are shown by thin lines. The split triangles
are emphasized. One can see the development of convection
and appearance of the irregular structure within the convec-
tive cell that is due most likely to convective instability.

5 Conclusions

The dynamical core for simulation of atmospheric motion
presented in this paper can be considered to be a finite-
element method combined with the least action principle. It
includes features of both a Eulerian and Lagrangian descrip-
tion of fluid motion. The discrete set of parameters represent-
ing the atmosphere at the beginning and at the end of each
time step correspond to the same set of spatial points with the
associated fluid particles located at these points (i.e. a Eule-
rian description). The evolution within a time step, however,
makes use of the Lagrangian description of fluid motion. The
advantages of this approach include the following:

1. For a given set of grid points and a given forward opera-
tor (i.e. the mode of interpolation), through a minimiza-
tion of action, the algorithm ensures a maximal close-
ness (in a broad sense) of the evolution of the discrete
system to the motion of the continuum atmosphere (i.e.
a dynamically optimal algorithm).

2. The grid of selected discrete points can be irregular, al-
lowing for a variable resolution in space.

3. The spatial resolution can be adjusted locally while ex-
ecuting calculations.

4. The use of a set of tetrahedra as finite elements in the
algorithm ensures a better (piecewise linear rather than
staircase) representation of topography.

5. The algorithm automatically calculates the evolution of
passive tracers by following the trajectories of the fluid
particles, which ensures that all passive tracer properties
required a priori are satisfied.

For demonstration purposes, the algorithm presented here
considers only the very simple case of a dry atmosphere and
the evolution of an arbitrary number of passive tracers. To
consider a real atmosphere, one has to add heat sources and
turbulent stresses to the RHS of Eq. (25). To include heat-
ing/cooling of the atmosphere, passive tracers such as water
vapour and hydrometeors need to be added to the develop-
ment. Their influence can be accounted for by considering

the variation of entropy of the fluid particles at each time step
by including heat exchange processes at the grid vertices, or,
more accurately if needed, with account of the motion of the
fluid particles. At this stage, one would need information re-
garding brightness temperatures from corresponding radia-
tive transfer calculations. The effects of turbulence can also
be included by adding Reynolds stresses τij to the develop-
ment through an additional term∑
i,j

τij∂ξi/∂aj

in action (Eq. 21) and integration over the tetrahedra, which
would provide the corresponding contributions to the evolu-
tion of momenta in Eq. (25).

Future work should consider standard tests for a dynamical
core and possibilities for code optimization.
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